Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распределение Гаусса и его основные характеристики





В случае большого числа измерений (), случайный разброс значений измеряемой величины подчиняется закону,

 
 

открытому Гауссом. Функция P (X) симметрична относительно а, достигает максимума при Х = а (рис.4).

Кроме параметра а функция P (X) задается еще параметром s, который называется стандартным отклонением.

Величина D = s 2 называется дисперсией распределения и имеет смысл среднего значения квадрата отклонения Х от истинного значения а, т.е. , где — средний квадрат отклонения измеряемой величины от истинного значения.

Р (Х) быстро стремится к нулю, когда Х становится большим по сравнению с s.

Функция нормального распределения имеет вид:

(1)


Из рис. 5 видно, что основная часть результатов измерений группируется около центрального значения а – истинного значения измеряемой величины.

 

Отклонения по обе стороны от центра распределения наблюдаются тем реже, чем больше абсолютная величина таких отклонений.

Если изменить метод измерения величины а и измерять ее другим прибором, например, более совершенным, более точным, то разброс результатов измерений будет около центра с прежней абсциссой а, но разброс результатов существенно уменьшится (рис. 5, кривая 1). Если же точность метода измерений ниже, чем для кривой 2, то разброс результатов увеличится и кривая станет более пологой (рис. 5, кривая 3). Трем кривым на рис. 5 соответствуют разные значения стандарта отклонения s, который характеризует размах (разброс) случайных отклонений, присущих данному методу измерения. При этом площадь под кривыми распределения для разных s одна и та же. Параметры а и s в распределении Гаусса, как правило, неизвестны и их нужно искать по данным значениям Х 1, Х 2, … Хn, полученным из опыта. В теории погрешностей существует метод (максимального правдоподобия), который позволяет установить связь между параметрами распределения Гаусса а и s и набором результатов измерений физической величины. Используя этот метод, можно строго математически доказать, что наиболее правдоподобной оценкой истинного значения измеряемой величины является среднее арифметическое из данных измерений, т.е.

(2)

а наилучшей оценкой второго параметра s является средняя квадратичная погрешность среднего .

Расчет осуществляется по формуле:

(3)


Понятие доверительного интервала и доверительной вероятности (надежности)

 

Среднее арифметическое является приближенной оценкой истинного значения а измеряемой величины. Поэтому, чтобы эта оценка была наиболее полной, надо обязательно указать, какова погрешность полученного результата D X. Величину абсолютного отклонения среднего из n измерений от истинного значения а называют абсолютной погрешностью или доверительным интервалом среднего. Важно не то, что в результате измерений мы получаем , а важно то, что наряду с должен быть указан интервал D X, в пределах которого где-то находится истинное значение а.

Однако мы не может достоверно утверждать, что истинное значение а окажется внутри интервала , мы можем сказать лишь следующее: имеется какая-то вероятность того, что а лежит в пределах этого интервала. Следовательно, доверительный интервал D X необходимо указывать вместе с доверительной вероятностью (надежностью) a попадания истинного значения в пределы этого интервала. Без указания вероятности a сам по себе интервал D Х не может быть принят в качестве оценки погрешности результата.
Если известен вероятностный закон распределения Р (Х), то вероятность попадания истинного значения в пределы этого интервала может быть рассчитана по формуле:

(4)

Расчет показывает, что уже при числе измерений выбор погрешности , дает величину надежности a, равную 0,68. Другими словами, если взять интервал надежности , то можно утверждать, что в 68 случаях из 100 истинная величина а попадет в указанный интервал, а в 32 случаях из 100 – не попадет в этот интервал.

В случае, когда , то a получается равной 0,95. Если , a = 0,997, т.е. за пределы доверительного интервала выйдет всего лишь около 3 измерений из 1000.

 







Дата добавления: 2015-08-12; просмотров: 796. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия