Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка истинного значения измеряемой величины по результатам эксперимента. Понятие случайной величины и вероятностного распределения





Предварительное ознакомление с классификацией погрешностей показывает, что измерение любой физической величины a необходимо проводить многократно.

Допустим, что проведена серия n независимых, одинаково тщательных, прямых измерений, в результате которых получены значения x 1, x 2, x 3,... xn физической величины a. Тогда, как правило, наблюдается разброс данных около истинного значения, обусловленный существованием различных случайных факторов. Нанесем на числовую ось полученный ряд значений x 1, x 2, x 3,... xn в виде черточек (рис. 1а). На числовой оси этот ряд значений займет определенное место, и, очевидно, все значения как-то сгруппируются около искомого истинного значения измеряемой величины, положение которого отмечено вертикальной линией. Задача состоит в том, чтобы по данным x 1, x 2, x 3,... xn произвести оценку истинного значения измеряемой величины. Для решения этой задачи можно применить законы, установленные теорией вероятности по отношению к многократному повторению случайных явлений. В курсе теории вероятностей доказывается, что самой лучшей оценкой истинного значения является среднее арифметическое из числа измерений:

, (1)

т.е. можно записать, что .

Эта запись означает, что истинное значение измеряемой величины а приближенно, но наилучшим образом оценивается по среднему арифметическому значению . Если повторить опыт, произведя вторую серию измерений, то, очевидно, получится новый ряд значений (рис. 1б), причем полученные значения сгруппируются около истинного, но не повторят картину первой серии измерений.


Поскольку на результат измерений влияют только случайные факторы, то мы не можем утверждать, что наилучшей оценкой а будет то же, что и в первой серии измерений, значение :

.

Вероятнее всего, из расчета получится другое значение , которое, также как и , является наилучшей оценкой а, но в новой серии измерений. Наконец, из результатов третьей серии n измерений (рис. 1в) наилучшей приближенной оценкой истинного значения а будет

Это значение, вообще-то, не совпадает с двумя предыдущими средними значениями измеряемой величины. Таких серий равноточных независимых друг от друга измерений можно провести сколько угодно. Что же в конце концов послужит оценкой величины а? Ведь каждый раз мы будем получать среднее значение , лежащее где-то недалеко от а. Как видно из рис. 1, приближенные оценки всегда более или менее отличаются друг от друга, т.е. испытывают случайное рассеивание, несмотря на кажущуюся неизменность условий в отдельных опытах.

Таким образом, можно сделать очень важный вывод о том, что результат измерения является случайной величиной. Результат каждого отдельного измерения или результат расчета оценки истинного значения невозможно заранее предсказать, однако, это еще не означает, что повторные измерения не обнаруживают никакой закономерности. Закономерность в распределении измерений существуети достаточно хорошо изучена. Она описывается законом нормального распределения
Гаусса
[1].

Результаты серии измерений одной величины можно наглядно представить, построив диаграмму, которая показала бы, как часто получались те или иные результаты. Такая диаграмма называется гистограммой. В качестве примера рассмотрим построение гистограммы по данным измерений величины ускорения силы тяжести методом математического маятника.
В табл. 1 приведены средние значения искомой величины g
(с точностью до сотых, всего 112 значений). Результаты измерений распределены по группам в интервале .

 


Таблица 1

Значение g (м/с2) при разбиении по группам Число измерений в каждом интервале Относительная доля числа измерений
9,20 – 9,29   0,09
9,30 – 9,39   0,027
9,40 – 9,49   0,035
9,50 – 9,59   0,089
9,60 – 9,69   0,143
9,70 – 9,79   0,188
9,80 – 9,89   0,196
9,90 – 9,99   0,152
10,00 – 10,09   0,089
10,10 – 10,19   0,045
10,20 – 10,29   0,018
10,30 – 10,39   0,009
Всего 112 значений

 


На рис. 2 отчетливо отображена тенденция большинства
измерений группироваться вблизи некоторого значения
измеряемой величины, которое и можно принять за наилучшую оценку истинного значения.

Теперь представим себе, что число измерений неограниченно возросло и стало очень большим. Ширину интервалов можно сделать очень малой, но чтобы в каждом интервале было бы много отсчётов. Если теперь вместо гистограммы построить график, который давал бы относительную долю полного числа измерений , то получится гладкая кривая, называемая кривой распределения.

В рассмотренном примере мы имели дело с последовательностью случайных событий, которые обнаруживают при неограниченном увеличении их числа характерную статистическую устойчивость. Обобщая сказанное, введем понятие случайной величины Х, как переменной величины, принимающей различные значения, зависящие от случайных факторов. На графике по оси абсцисс будем откладывать значения Х 1, Х 2, … Хn, полученные в результате n измерений физической величины, а по оси ординат – частоту появления полученных значений в заданном интервале , приходящуюся на единицу этого интервала. Тогда в пределе при и получим плавную кривую распределения для функции .

Функция P (X) называется плотностью вероятности распределения. Смысл введенной функции P (X) состоит в том, что P (X). dX представляет относительную долю полного числа измерений n, приходящуюся на интервал (X, X + dX). Другими словами, P (X). dX есть вероятность того, что отдельное значение измеряемой величины находится в пределах интервала (X, X + dX).


На рис. 3 изображена типичная кривая распределения результатов измерения физической величины, причем P (X). dX

 
 

площадью фигуры, заштрихованной наклонными линиями.

Следовательно, вероятность того, что отдельное значение измеряемой величины окажется в интервале от X 1 до X 2, равна и представлена на рис. 3 площадью фигуры, заштрихованной горизонтальными линиями.

Как показывает опыт, в больших совокупностях равноправных объектов, которые называются статистическими ансамблями, существуют присущие им вероятностные распределения (распределение Максвелла для молекул идеального газа, распределение Ферми для электронов в металле, распределение Пуассона для распада радиоактивных атомов, распределение Бозе – Эйнштейна для теплового излучения, распределение Гаусса в случае большого числа измерений). Каждое из этих распределений математически описывается своей функцией плотности вероятности распределения P (X), имеющей конкретный математический вид в зависимости от характера случайной величины.







Дата добавления: 2015-08-12; просмотров: 2340. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия