Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сходимость ряда Фурье. Явление Гиббса





РАЗЛОЖЕНИЕ ФУНКЦИЙ В РЯД ФУРЬЕ

Каждой абсолютно интегрируемой на отрезке* [—π, π] функции f(x) можно поставить в соответствие ее тригонометрический ряд Фурье:

Коэффициенты тригонометрического ряда Фурье называют коэффициентами Фурье и вычисляют по формулам Эйлера — Фурье:

Справедливо следующее утверждение. Если функция f(x) кусочно-гладкая на отрезке[—π, π], то ее тригонометрический ряд Фурье сходится в каждой точке этого отрезка. При этом, если

сумма тригонометрического ряда Фурье, то

для любого X ϵ [—π, π] и

Обозначим
n-ю частичную сумму ряда Фурье кусочно-гладкой на отрезке [—π, π] функции f(x). Тогда утверждение теоремы можно записать в виде:

 

, если f(x) непрерывна в точке х0; , если f(x) терпит разрыв первого рода (скачок) в точке х0.

 

Ниже приведен фрагмент рабочего документа Mathcad с графиком функции*

и графики частичных сумм Sn(x) ее ряда Фурье.

На графиках видно, как сходятся частичные суммы ряда Фурье. В окрестности точек непрерывности функции f(x) разность между значением функции в точке х и значением частичной суммы ряда в этой точке стремится к нулю при n → , что полностью соответствует теории, поскольку в этом случае . Видно также, что разность Sn(x) — f(x) стремится к нулю тем скорее, чем дальше от точек разрыва функции расположена точка х. В окрестности точек разрыва x0 = функции f(x) частичные суммы Фурье ведут себя иначе. При этом видно, что, хотя

существуют такие последовательности un → x0 + 0 и vn → x0 - 0, что пределы Sn(un) и Sn(vn) при n различны и оба отличаются от .

Эта особенность поведения частичных сумм Фурье в окрестности точек разрыва называется явлением Гиббса. Явление Гиббса состоит в том, что для некоторых функций f(x) в точке x0 ее скачка существуют такие значения α, что

 

 

 

Это утверждение не противоречит теории, поскольку у Гиббса рассмотрен предел Sn(xn), а в теореме — Sn(x).

 







Дата добавления: 2015-08-12; просмотров: 1364. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия