Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Систематические и случайные погрешности





Систематической погрешностью называется погрешность, остающаяся постоянной или закономерно изменяющейся во времени при повторных измерениях одной и той же величины.

Случайной погрешностью измерения называется погрешность, которая при многократном измерении одного и того же значения изменяются случайным образом. Например, при измерении валика одним и тем же прибором в одном и том же сечении получаются различные значения измеренной величины.

Систематические и случайные погрешности чаще всего появляются одновременно.

Для выявления систематической погрешности производят многократные измерения образцовой меры и по полученным результатам определяют среднее значение размера. Отклонение среднего значения от размера образцовой меры характеризует систематическую погрешность, которую называют "средней арифметической погрешностью", или "средним арифметическим отклонением".

Систематическая погрешность всегда имеет знак отклонения, т.е. "+" или "-". Систематическая погрешность может быть исключена введением поправки.

При подготовке к точным измерениям необходимо убедиться в отсутствии постоянной систематической погрешности в данном ряду измерений. Для этого нужно повторить измерения, применив при этом уже другие средства измерения и общую обстановку опыта.

Прогрессивные и периодические систематические погрешности в противоположность постоянным можно обнаружить при многократных измерениях.

Обработка данных и оценка параметров случайных погрешностей производится методами математической статистики.

Каждая случайная величина полностью определяется своей функцией распределения.

При решении практических задач достаточно знать несколько числовых параметров, которые позволяют представить основные особенности случайной величины в сжатой форме. К таким величинам относятся в первую очередь математическое ожидание и дисперсия.

Математическое ожидание случайной величины – число (среднеарифметическое значение), вокруг которого сосредоточены значения случайной величины. Математическое ожидание случайной величины обозначается M.

Основные свойства математического ожидания:

1) Математическое ожидание постоянной величины равно самой постоянной Mc = c.

2) Постоянный множитель можно выносить за знак математического ожидания.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

4) Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.







Дата добавления: 2015-08-12; просмотров: 556. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия