Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Виды распределений





Нормальное (гауссово, симметричное, колоколообразное) распределение (normal, Gaussian distribution) - описывает совместное воздействие на изучаемое явление небольшого числа случайно сочетающихся факторов (по сравнению с общей суммой факторов), число которых неограничено велико. Встречается в природе наиболее часто, за что и получило название «нормального». Характеризует распределение непрерывных случайных величин.

х - значения случайной величины;

р - вероятность появления данного значения

в совокупности.

Биномиальное распределение (распределение Бернулли) (binomial distribution, Bernoulli distribution) - описывает распределение частоты события, обладающего постоянной вероятностью появления при многократных испытаниях. При большом числе испытаний стремиться к нормальному. Крайним вариантом биномиального распределения является альтернативное распределение, при котором вся совокупность распределяется на две части (две альтернативы). Биномиальное распределение характеризует распределение дискретных случайных величин.

х - значения случайной величины; р - вероятность появления данного значения в совокупности.

Распределение Пуассона – описывает события, при которых с возрастанием значения случайной величины, вероятность появления ее в совокупности резко уменьшается. Распределение Пуассона характерно для редких событий и может рассматриваться также как крайний вариант биномиального. Характеризует распределение дискретных случайных величин.

х - значения случайной величины;

р - вероятность появления данного значения в совокупности.

 

15. Сравнительный анализ параметрической и непараметрической статистики.

 

Анализ совокупности начинается с установления вида распределения изучаемого признака. Для этого полученные данные представляются в виде вариационного ряда, изображаются графически и делаются соответствующие расчеты.

В случае распределения близкого к нормальному мы вправе для дальнейшего статистического анализа применять параметрическую статистику, если распределение отлично от нормального или при неизвестном распределении рекомендуется применять непараметрическую статистику.

Непараметрические методы:

■ не требуют предварительного знания вида распределения;

■ не требуют предварительного расчета параметров распределения (средних величин, стандартного отклонения и др.);

■ позволяют сравнивать совокупности с номинальными и порядковыми признаками;

■ просты в применении.

Отрицательные стороны непараметрических методов:

■ обладают меньшей мощностью, чем параметрические;

имеют существенные ограничения в применении по числу наблюдений

 

16. Вариационный ряд и правила его формирования. Примеры вариационных рядов

 

 

Вариационный ряд (frequency table) - ранжированный ряд распределения по величине какого-либо признака. Этот признак носит название варьирующего, а его отдельные числовые значения называются вариантами и обозначаются через " ". Число, показывающее, сколько раз данная варианта встречается в вариационном ряду, называется частотой и обозначается через " "

Вариационный ряд можно разбивать на отдельные (по возможности равные) части, которые называются квантилями (quantile). Наиболее часто употребляемые квантили представлены в таблице.

Название квантилей Число частей, на которые разбивается ряд
Медиана  
Терциль  
Квартиль  
Дециль  
Процентиль  

Рис 3.1. Этапы описания (обобщения) количественного признака

 
 

Виды вариационных рядов:

1. В зависимости от вида случайной величины:

- дискретный;

- непрерывный.

2. В зависимости от группировки вариант:

- несгруппированный;

- сгруппированный (интервальный):

3. В зависимости от частоты, с которой каждая варианта встречается в вариационном ряду:

- простой (р =1);

- взвешенный (р >1).

При построении интервальных рядов могут возникнуть вопросы о числе групп и величине интервалов в группе. Для определения числа групп можно использовать формулу Стерджесса

где n – численность единиц (объем) изучаемой совокупности; k – число образуемых групп.

Величина интервала вычисляется по формуле:







Дата добавления: 2015-08-12; просмотров: 1422. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия