Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление по формуле Симпсона путем деления отрезка [a,b] на множество более мелких отрезков





Для нахождения интеграла вычислим площадь под графиком функции, являющейся подынтегральным выражением(рис.4.2). Здесь a и b - пределы интегрирования; xi = a + i(b - a)/n.

Для использования формулы Симпсона разбиваем отрезок [a,b] на n (четное) более мелких отрезков.

Формула Симпсона имеет вид:

Здесь n - четное число делений интервала интегрирования; xi = a + i(b – a)/n.

Алгоритм состоит в циклическом выполнении расчетов f(xi). При этом следует отдельно рассмотреть случаи для границ интегрирования f(a) и f(b) и учесть, что при нечетном номере вычисляемого элемента значение функции умножается на 4, при четном - на 2. При конечных значениях отрезка умножение не производится.

Рис.4.2. Вычисление интеграла по формуле Симпсона.

Пример 4.2. Вычисление интеграла по формуле Симпсона.

#include <iostream>

#include <conio.h>

#include <math.h>

using namespace std;

 

int main()

{unsigned long i, n;

float a,b,x,h,y,s;

cout << "Четное количество делений -> ";

cin >> n;

a = 0; b = 1.8;

s = 0; x = a;

h = (b – a)/n;

for (i = 0; i <= n; i++)

{ y = (1/(1+sqrt(x));

x = x + h;

if (i % 2!= 0) s = s + 4*y;

else if (i == 0 || i == n) s = s + y;

else s = s + 2*y;

}

s*=h/3;

cout << "S = " << s;

}

Вычисление с заданной точностью e корня уравнения F(x)=0







Дата добавления: 2015-08-12; просмотров: 535. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия