I. Понятия и постулаты термодинамики
ПРЕДИСЛОВИЕ
Термодинамика, статистическая физика и физическая кинетика – три различных раздела физики. Возникает вопрос: почему вопросы из этих разных разделов физики объединяются вместе? В данных разделах физики рассматриваются явления, обусловленные совокупным действием огромного числа непрерывно движущихся молекул, из которых состоят окружающие тела. Благодаря очень большому числу частиц система приобретает совершенно новое качество: ее равновесные макроскопические свойства не зависят от начальных положений и скоростей этих частиц. А открытие, что теплота представляет собой некоторое молекулярное движение, составило эпоху в науке. Коллективное движение огромного числа молекул определяет явления переноса. Первый раздел – термодинамика – принадлежит к классической физике. Это один из основных разделов физики. Термодинамика возникла в первой половине XIX в. как теоретическая основа начавшей развиваться теплотехники. Первоначально задача сводилась к изучению закономерностей превращения теплоты в механическую работу в тепловых двигателях и исследованию условий, при которых такое превращение является наиболее оптимальным. Именно такую цель преследовал французский инженер и физик Сади Карно в сочинении "О движущей силе огня и о машинах, способных развить эту силу" (1824 г.), в котором термодинамика как наука сделала первые шаги, хотя в сочинении и сохранился язык старых воззрений на теплоту как на какое-то невесомое, не создаваемое и неуничтожимое вещество (теплород). В дальнейшем развитие термодинамики вышло за рамки указанной технической задачи, центр тяжести исследований переместился в сторону изучения физических вопросов. Основным содержанием современной термодинамики является изучение закономерностей тепловой формы движения материи и связанных с ней физических явлений. Большой вклад в развитие термодинамики внесли Карно, Майер, Джоуль, Клаузиус, Томсон (лорд Кельвин), Гиббс и др. Термодинамика по-прежнему играет важную роль в современных исследованиях, демонстрируя ценность феноменологического подхода. Термодинамика изучает свойства равновесных физических систем, исходя из трех основных законов, называемых началами термодинамики, и не использует явно представлений о молекулярном строении вещества. С помощью термодинамики устанавливаются соотношения между такими несколько абстрактными величинами, как энтропия, свободная энергия и др. Благодаря простоте логических построений термодинамика часто позволяет с общих позиций разобраться в физической сути конкретной задачи. В этом состоит преимущество феноменологического подхода. Однако феноменологический подход ограничивает глубину изучения свойств физических систем, не позволяет вскрыть природу исследуемых явлений. Для всестороннего и более полного рассмотрения тепловых закономерностей необходимы статистические методы. Цель статистической физики состоит в исследовании физических явлений с микроскопической точки зрения. Статистическая физика позволяет установить связь между физическими законами микро- и макромира. Сюда относится, например, получение термического и калорического уравнений состояния вещества, которые придают общим выводам термодинамики законченный конкретный характер. Термодинамика оставляет в стороне самопроизвольные нарушения состояний равновесия, или флуктуации, которые проявляются тем отчетливее, чем меньше размеры системы. Статистическая физика охватывает и этот круг явлений, устанавливая границы применимости термодинамики. Статистическая физика – это один из ключевых разделов современной физики. Основное содержание термодинамики и статистической физики составляет рассмотрение закономерностей теплового движения в системах, находящихся в тепловом равновесии, а также закономерностей, проявляющихся при переходе системы в равновесное состояние. Кинетические методы позволяют изучать процессы в телах, идущие с конечными скоростями, т. е. неравновесные процессы, в частности процессы переноса и выравнивания. Кинетические методы и их приложения составляют содержание физической кинетики. Эти методы основаны на атомно-молекулярных представлениях. Основными проблемами физической кинетики являются нахождение уравнений, определяющих изменение функции распределения в пространстве и во времени, и установление связей между функцией распределения и макроскопическими величинами (потоками). Физическая кинетика позволяет установить соотношения между потоками различных величин (массы, импульса, энергии, энтропии и т. д.) и распределениями таких параметров, как температура, давление, концентрации компонент вещества, и другими величинами, найти коэффициенты в этих связях, а также дает возможность установить границы применимости механики сплошных сред. Таким образом, общими в указанных разделах физики являются объекты исследования (макроскопические системы), до некоторой степени цели (получение связей различных макропараметров), подходы: феноменологический (в основном в термодинамике) и статистический в статистической физике и физической кинетике. Термодинамика и статистическая физика необходимы при изучении физических свойств веществ, таких как теплоемкость, сжимаемость и другие свойства. Эти термодинамические свойства дополняются переносными, получаемыми в физической кинетике, а именно законами и коэффициентами теплопроводности, вязкости и др. Теплофизические (термодинамические и переносные) свойства используются в физической кинетике при исследовании явлений переноса, при изучении поведения вещества, когда происходит его движение. При изложении элементов статистической физики потребуются некоторые сведения из квантовой механики. К ним следует относиться, как к исходным данным. Математические выкладки, а без них не обойтись, потребуют определенных технических навыков. Математическому аппарату будет уделено некоторое внимание.
I. Понятия и постулаты термодинамики
|