Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Биномиальное распределение. Пусть производится n независимых испытаний, в каждом из которых событие А может появиться либо не появиться





Пусть производится n независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Вероятность наступления события во всех испытаниях постоянна и равна p (следовательно, вероят­ность непоявления q = l - p). Рассмотрим в качестве дискретной случайной величины X число появлений со­бытия A в этих испытаниях.

Поставим перед собой задачу: найти закон распреде­ления величины X. Для ее решения требуется определить возможные значения X и их вероятности. Очевидно, событие A в n испытаниях может либо не появиться, либо появиться 1 раз, либо 2 раза,... либо n раз. Таким образом, возможные значения X таковы: = 0, =1, = 2,..., = n. Вероятности этих возможных значений вычисляются по формуле Бернулли:

(*)

Биномиальным называют распределение вероятностей, определяемое формулой Бернулли. Закон назван «бино­миальным» потому, что правую часть равенства (*) можно рассматривать как общий член разложения бинома Ньютона:

.

Напишем биномиальный закон в виде таблицы:

X n n-1 k  
P

Для биномиального закона M(X) = np, D(X)=npq

Пример. Монета брошена 2 раза. Написать в виде таблицы закон распределения случайной величины X — числа выпадений «герба».

Решение. Вероятность появления «герба» в каждом бросании монеты p = 1/2, следовательно, вероятность непоявления «герба» q = 1- 1/2 = 1/2.

При двух бросаниях монеты «герб» может появиться либо 2 раза, либо 1 раз, либо совсем не появиться. Таким образом, возможные значения X таковы: = 2, =1, = 0. Найдем вероятности этих возможных значений по формуле Бернулли:

,

,

.

Напишем искомый закон распределения:

X 2 1 О

p 0,25 0,5 0,25 Контроль: 0,25 + 0,5 + 0,25=1.

Примеры графиков функции вероятности биномиального распределения







Дата добавления: 2015-08-12; просмотров: 764. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия