Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства задач ЛП





Выше в лекции по ЛП было показано, что любая задача ЛП м.б. представлена в виде общей, канонической или стандартной задачи. Причем, от одной задачи можно перейти к другой.

Будем рассматривать каноническую задачу, в которой система ограничений – система уравнений.

Теорема 4. Множество всех допустимых решений системы ограничений ЗЛП (задачи линейного программирования)является выпуклым, т.е. является выпуклым многогранником (или выпуклой многогранной областью). Будем называть в дальнейшем – многогранником решений.

Теорема 5. Если задача ЛП имеет оптимальное решение, то линейная функция принимает макс (мин) значение в одной из угловых точек многогранника решений.

Эта теорема является фундаментальной, т.к. она указывает принципиальный путь решения ЗЛП. Действительно, согласно этой теореме вместо исследования бесконечного множества допустимых решений для нахождения среди них искомого оптимального решения необходимо исследовать лишь конечное число угловых точек многогранника решений.

Теорема 6. Каждому допустимому базисному решению ЗЛП соответствует угловая точка многогранника решений, и наоборот, каждой угловой точке многогранника решений соответствует допустимое базисное решение.

Из теорем 5 и 6 вытекает следствие: если ЗЛП имеет оптимальное решение, то оно совпадает, по крайней мере, с одним из ее допустимых базисных решений.

Итак, оптимум линейной функции ЗЛП следует искать среди конечного числа ее допустимых базисных решений.







Дата добавления: 2015-08-12; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия