Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Система m линейных уравнений с n переменными





Система m линейных уравнений с n переменными имеет вид:

 

а11*Х1 + а12*Х2 + …+ а1j*Xj + …+ а1n*Xn = В1

а21*Х1 + а22*Х2 + …+ а2j*Xj + … + а2n*Xn = В2

………………………….

аi1*Х1 + аi2*Х2 +…+ аij*Xj + … + а in*Xn = В i (6)

………………………….

аm1*Х1 + аm2*Х2 + … + аmn*Xn = Вm

 

или в краткой записи

(I = 1, 2, …, m)

в задачах ЛП представляют интерес системы, в которых максимальное число независимых уравнений системы меньше числа переменных. Будем полагать, что в системе (6) все m уравнений системы независимы, т.е. m < n.

Любые m переменных системы m линейных уравнений с n переменными (m < n) называются основными (базисными), если определитель матрицы коэффициентов при них отличен от нуля. Тогда остальные n - m переменных называются неосновными (или свободными).

Основными могут быть разные группы из n переменных, но общее число групп не превосходит число сочетаний .

= n! / ((n-m)! m!)

Пример:

Найти все возможные группы основных переменных в системе

х1 – х2 – 2х3 + х4 = 0 (7)

2х1 + х2 + 2х3 – х4 = 2

 

Решение. Общее число групп основных переменных не более чем = 4*3/2 = 6, т.е. возможны группы основных переменных: х1, х2; х1, х3; х1, х4; х2, х3; х2, х4; х3, х4.

Переменные х1, х2 могут быть основными, т.к. определитель матрицы из коэффициентов при этих переменных = 1 * 1 – 2 * (-1) = 3 ¹ 0. рассуждая аналогично, можно найти, что могут быть основными переменные х1, х3; х1, х4, но не могут быть основными х2, х3; х2, х4; х3, х4, т.к. соответствующие определители равны 0.

х3, х4 = (-2) * (-1) – 2 * 1 = 0.

Существует теорема. Если для системы из m линейных уравнений с n переменными ((m < n) существует хотя бы одна группа основных переменных, то эта система является неопределенной, причем каждому произвольному набору значений неосновных переменных соответствует одно решение системы.

Пусть, например, х1, х2, …, хm – основные переменные (если это не так, то нумерацию можно изменить), то определитель матрицы

¹ 0.

Оставим в левых частях уравнений системы (6) члены с переменными х1, х2, …, хm, а члены с переменными xm+1, xm+2, …, xn перенесем в правые части. Получим:

а11*Х1 + а12*Х2 + …+ а1m*Xm = В1 - а1m+1*Xm+1 - … - а1n*Xn

а21*Х1 + а22*Х2 + …+ а2m*Xm = В2 – а2m+1*Xm+1 - … - а2n*Xn

…………………………………………………………………….

аm1*Х1 + аm2*Х2 + …+ аmm*Xm = Вm - аmm+1*Xm+1 - … - аmn*Xn

 

Задавая неосновным переменным xm+1, xm+2, …, xn произвольные значения, каждый раз будем получать новую систему с новыми свободными членами. Каждая из полученных систем будет иметь один и тот же определитель, т.е. каждая из систем будет иметь единственное решение. Так как получаемых таким образом систем бесконечное множество, то и система (6) будет иметь бесконечное множество решений.

Решение Х = (х1, х2, …, хn) системы (6) называется допустимым, если оно содержит лишь неотрицательные компоненты, т.е. Хj >=0 для любых j = 1, 2, …, n. В противном случае решение называется недопустимым.

Среди бесконечного множества решений системы выделяют базисные решения.

Базисным решением (БР) системы m линейных уравнений с n переменными называют решение, в котором все n – m неосновных переменных равны нулю.

В задачах ЛП особый интерес представляют допустимые базисные решении (ДБР), или, как их еще называют, опорные планы. Число базисных решений является конечным, т.к. оно равно числу групп основных переменных, не превосходящему . Базисное решение, в котором хотя бы одна из основных переменных равна нулю, называется вырожденным.

Пример:

В примере (7) существует три группы основных переменных, т.е. число базисных решений = 3.

Первое х1 и х2 – основные, х3 и х4 – неосновные (= 0), тогда

х1 – х2 = 0

2х1 + х2 = 2

откуда х1 =2/3; х2 = 2/3. следовательно первое баз решение системы Х1 = (2/3; 2/3; 0; 0) –допустимое.

Если взять за основные переменные Х1 и Х3, то получим второе баз решение системы Х2 = (2/3; 0; 2/3; 0) – также допустимое. Аналогично можно найти третье баз решение при основных переменных х1, х4 Х3 = (2/3; 0; 0; -2/3) – недопустимое.

Вывод: Совместная система (6) имеет бесконечно много решений, из них базисных решений – конечное число, не превосходящее .







Дата добавления: 2015-08-12; просмотров: 1226. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия