Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры построения ЭММ экономических задач линейного программирования





Задача об использовании ресурсов (задача планирования производства).

Для изготовления двух видов продукции П1 и П2 используют три вида ресурсов Р1, Р2 и Р3. Известны запасы этих ресурсов В1, В2 и В3 и число единиц ресурсов, затрачиваемых на изготовление единицы каждого вида продукции а11, а12, а21, а22, а31, а32. Известна также прибыль, получаемая от единицы продукции П1 и П2 – соответственно С1 и С2.

Необходимо составить такой план производства продукции, при котором прибыль от ее реализации будет макс.

ЭММ задачи:

Х1 и Х2 – число единиц продукции П1 и П2 соответственно.

F = С1*Х1 + С2*Х2 (1.1)

При ограничениях:

а11*Х1 + а12*Х2 <= В1

а21*Х1 + а22*Х2 <= В2 (1.2)

а31*Х1 + а32*Х2 <= В3

По смыслу задачи Х1>=0, X2>=0. (1.3)

Итак ЭММ задачи: найти такой план выпуска продукции Х = (Х1, Х2), удовлетворяющий системе (1.2) и условию (1.3), при котором функция (1.1) принимает макс значение.

В общей постановке ЭММ задачи об использовании ресурсов примет вид:

Найти такой план Х = (Х1, Х2, …, Хn) выпуска продукции, удовлетворяющий системе

 
 


а11*Х1 + а12*Х2 + … + а1n*Xn <= В1

а21*Х1 + а22*Х2 + … + а2n*Xn <= В2 (1.4)

………………………….

аm1*Х1 + аm2*Х2 + … + аmn*Xn <= Вm

 

и условию Х1>=0, X2>=0, …, Xn>=0, (1.5)

при котором функция

 

F = С1*Х1 + С2*Х2 + … + Сn*Xn (1.6)

 

принимает макс значение.

 







Дата добавления: 2015-08-12; просмотров: 438. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия