Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Экономико-математические модели задач ЛП





ЭММ планирования производства (задача о наилучшем использовании ресурсов)

Дано:

- предприятие выпускает n различных видов продукции (j=1,2,…,n);

- оно располагает для этого m видами ресурсов (i=1,2,…,m) (например, рабочая сила, площади, сырьё, энергия и пр.);

- ресурсы ограничены и составляют условных единиц;

- цена реализации j- го продукта равна , то есть задан вектор цен ;

- технологические коэффициенты aij: сколько единиц i- го ресурса расходуется для производства единицы j- го вида продукции.

Найти план производства изделий , обеспечивающий предприятию максимальную прибыль от реализации.

Составим ЭММ данной задачи. Общий размер прибыли от реализации всей продукции равен сумме . Таким образом, целевую функцию можно записать как максимум этого выражения

Теперь составим баланс расхода по каждому ресурсу. Скажем, расход i- го ресурса складывается из затрат на производство 1-го изделия, то есть ai1x1, расхода на производство 2-го изделия ai2x2,…, расхода на производство n- го изделия ainxn. С другой стороны, этот суммарный расход не может превысить общего количества этого ресурса, то есть bi. Таким образом, запишем аналогичные ограничения для каждого из ресурсов, получим систему неравенств:

Чтобы план был реален, он должен состоять из неотрицательных компонент:

Запишем ЗЛП о наилучшем использовании ресурсов в компактном виде: найти при ограничениях

;

.

Задача о смесях (выбор диеты, составление кормового рациона, приготовление различных смесей)

Рассмотрим на примере задачи о диете: получить кормовой рацион с заданными свойствами (содержанием питательных веществ) при наименьших затратах на исходные сырьевые материалы.

Дано:

- n видов исходных продуктов (сено, силос и пр. для животноводства);

- они содержат m видов питательных веществ (белки, жиры, углеводы, соли и т.д);

- для жизнедеятельности надо потреблять не менее bi единиц i -го питательного вещества;

- cj – стоимость единицы исходного продукта j – го вида;

- aij – содержание i- го питательного вещества в единице j- го вида корма.

Составим ЭММ задачи. Обозначим через xj количества кормов j- го вида. Тогда суммарная стоимость всего набора кормосмесей равна . Эта стоимость должна быть минимальной, то есть целевая функция задачи выглядит так:

.

Теперь составим баланс по каждому питательному веществу в кормовом рационе. Для i- го питательного вещества: содержание i- го питательного вещества в кормосмеси первого вида равно ai1x1, в кормосмеси второго вида равно ai2x2,…, в кормосмеси n- го вида равно ainxn. Общее количество i- го питательного вещества должно быть не меньше, чем bi. Это задаёт вид неравенства, и в результате запишем систему ограничений для всех питательных веществ:

Эти ограничения, как обычно, дополняются тривиальными ограничениями из физических соображений (поскольку нельзя произвести кормосмеси в отрицательных количествах!):







Дата добавления: 2015-08-12; просмотров: 482. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия