Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Комплексные числа





Комплексные числа применяются, в частности, для решения квадратных уравнений. Так, оставаясь в области множества действительных чисел, невозможно решить квадратное уравнение, дискриминант которого меньше нуля.

 

Комплексным числом называется выражение вида , где и - действительные числа, - мнимая единица.

Число называется действительной частью числа и обозначается , а число - мнимой частью числа и обозначается , т.е. , .

Действительное число является частным случаем комплексного при . Комплексные числа вида , не являющиеся действительными (т.е. при ), называются мнимыми, а при , , т.е. числа вида - чистомнимыми.

 

Числа и называются сопряженными. Два комплексных числа и называются равными, если равны их действительные и мнимые части, т.е. , если , . В частности , если и .

 

Арифметические операции на множестве комплексных чисел определяются следующим образом:

 

1. Сложение (вычитание) комплексных чисел:

.

2. Умножение комплексных чисел:

.

 

В частности,

3. Деление двух комплексных чисел:

Пример 7. Даны два комплексных числа и . Найти , , , .

Решение.

 

,

,

,

.

Умножая числитель и знаменатель на сопряженное делителю комплексное число , получаем:

 

.n

 

Пример 8. Решить квадратное уравнение .

Решение.

 

Используя, хорошо известную формулу нахождения корней квадратного уравнения, получим:

.

Проверить правильность решения можно с помощью теоремы Виета:

Действительно,

.n

 

Если для геометрического изображения действительных чисел используются точки числовой прямой, то для представления комплексных чисел служат точки координатной плоскости .

Плоскость называется комплексной, если каждому комплексному числу ставится в соответствие точка плоскости , причем это соответствие взаимно однозначное. Оси и , на которых расположены действительные числа и чисто мнимые числа , называются соответственно действительной и мнимой осями (рис. 4).

 

С каждой точкой комплексной плоскости связан радиус-вектор этой точки , длина которого называется модулем комплексного числа и обозначается :

.

Угол , образованный радиус-вектором с осью , называется аргументом комплексного числа и обозначается .

Очевидно, что

, .

Следовательно, комплексное число можно представить как:

.

Данное представление комплексного числа, где , , называется тригонометрической формой комплексного числа.

 

 







Дата добавления: 2015-08-12; просмотров: 660. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2026 год . (0.008 сек.) русская версия | украинская версия