Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение оси ; .





 

Рис. 9

Для того, чтобы построить прямую, достаточно взять две точки: , т.е. прямая проходит через точки (0;4) и (-4;0). Прямая проходит через точки (0;7) и (;0).

Итак, мы получили многоугольник . Координаты вершин мы знаем, а координаты вершины найдем, решая систему

 

:

т.е.

 

Вычислим значения функции в полученных вершинах многоугольника:

 

n

 

3.2 Прямая в пространстве

Пусть заданы вектор и точка (рис. 10)

Рис. 10

 

Параметрические уравнения прямой, проходящей через точку в направлении вектора имеют вид:

 

(3.4)

Здесь - координаты текущей точки прямой, а - параметр, принимающий все значения от - до . При этом существует взаимно однозначное соответствие между значениями и точками прямой. Вектор называют направляющим (или базисным) вектором прямой.

Иногда используют также канонические уравнения прямой:

 

.

 

Пример 11. (Образец выполнения задачи 7(a) из контрольной работы). Составить канонические и параметрические уравнения прямой, проходящей через две данные точки и .

Решение. В качестве направляющего возьмем вектор (рис. 11),


Рис. 11

 

а в качестве фиксированной точки – точку и запишем искомые параметрические уравнения

 

 

Канонические уравнения данной прямой будут иметь вид:

 

.n

Пример 12. При каких и прямые

и

параллельны? Составить уравнение прямой, параллельной данным и проходящей через точку

Решение. Прямые параллельны тогда и только тогда, когда их направляющие векторы и коллинеарны, т.е. их соответствующие координаты пропорциональны

 

,

 

откуда Прямая, параллельная данным и проходящая через точку , имеет тот же направляющий вектор (3;-2;-1); ее параметрические уравнения таковы

 

, . n

 







Дата добавления: 2015-08-12; просмотров: 629. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия