Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плоскость





Вектором нормали к плоскости называется вектор, перпендикулярный к этой плоскости. Уравнение плоскости по точке и заданному вектору нормали (рис. 12)

 

 

Рис. 12

 

имеет вид:

 

(3.5)

 

Это линейное уравнение относительно переменных . Верно и обратное: всякое линейное уравнение

 

(3.6)

 

выражает плоскость, причем коэффициенты при переменных являются координатами вектора нормали этой плоскости. Данное уравнение называется общим уравнением плоскости.

 

Пример 13. (Образец выполнения задачи 7(b) из контрольной работы). Найти уравнение плоскости, проходящей через точки и .

Решение. Из точки выпустим два вектора и . Тогда в качестве нормали искомой плоскости можно взять векторное произведение векторов и (рис. 13),

Рис. 13

 

т.к. перпендикулярен вектору , вектору , а значит и плоскости, в которой они лежат.

 

,

.

Запишем уравнение искомой плоскости по вектору нормали и, например, точке :

 

.

 

Окончательно, после упрощений, имеем:

 

.

 

Полученный результат следует повторить, подставляя в уравнение координаты точек и :

 

верно

верно

верно. n

 

Пример 14. (Образец выполнения задачи 7(c) из контрольной работы). Найти параметрические уравнения прямой, проходящей через точку перпендикулярно плоскости

.

Решение. Т.к. искомая прямая перпендикулярна к плоскости, то ее направляющий вектор совпадет с вектором нормали плоскости (рис. 14):

 

Рис.14

 


.

 

Осталось лишь записать искомые уравнения прямой, используя формулы (2.4):

 

, .n

 

 







Дата добавления: 2015-08-12; просмотров: 485. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия