Студопедия — Метод електронного балансу
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод електронного балансу






ВСТУП

 

Мета методичних вказівок – допомогти студентам у самостійній роботі над вивченням теми про окисно-відновні процеси та реакції. Окисно-відновні реакції – одне з найважливіших теоретичних питань основних розділів загальної, неорганічної, органічної, аналітичної та фізичної хімії.

Окисно-відновні реакції надзвичайно поширені у природі: процеси фотосинтезу, дихання, травлення, підтримування життєдіяльності біологічних систем. Ці реакції відіграють важливу роль у практичній діяльності людини (вилучення металів і неметалів з руд, використання хімічних джерел струму, синтез хімічних продуктів, боротьба з корозією металів і т.п.).

Методичні вказівки дають можливість студентам засвоїти такі поняття, як ступінь окиснення елементів, окисник, відновник, процеси окиснення, відновлення та набудуть практичних навичок методами електронного та іонно-електронного балансів, визначати коефіцієнти в рівняннях окисно-відновних реакцій.

 

1. ОКИСНО-ВІДНОВНІ РЕАКЦІЇ

 

1.1. Ступінь окиснення елементів

 

У багатьох хімічних реакціях утворення речовин відбувається в результаті переміщення електронів від одних частинок до інших. Залежно від ступеня зміщення електронів виникають сполуки різного характеру: від іонного до ковалентно-неполярного. Для характеристики стану електронів у хімічних сполуках впроваджено поняття ступеня окиснення.

Ступенем окиснення елемента називається формальний заряд, який визначається числом електронів, зміщених від атома або до атома даного елемента у сполуці.

Позитивний ступінь окиснення означає число електронів, що зміщується від даного атома, а негативний – до даного атома.

З цього витікає, що у сполуках з неполярним зв'язком ступінь окиснення елементів дорівнює нулю.

У простих іонних сполуках ступінь окиснення елементів відповідає електричному заряду (заряду іона), оскільки при утворенні цих сполук відбувається практично повний перехід електронів від одного атома до іншого. У сполуках з полярними ковалентними зв'язками ступінь окиснення визначається величиною електронегативності. Елементи з більшою електронегативністю мають негативний ступінь окиснення, а з меншою – позитивний.

Необхідно запам'ятати випадки, коли елементи мають постійний ступінь окиснення.

Ступінь окиснення елемента у простій сполуці і в елементарному стані дорівнює нулю:

У молекулах складних речовин ступінь окиснення Гідрогену (окрім гідридів металів) дорівнює +1, а Оксигену −2: Ступінь окиснення елементів головних підгруп І, II і III груп періодичної системи у сполуках завжди позитивний і дорівнює номеру групи:

У сполуках з металами і Гідрогеном ступінь окиснення галогенів F, Сl, Вr, І дорівнює −1, Сульфуру –2:

У сполуках з Оксигеном максимальний позитивний ступінь окиснення Сульфуру, Фосфору, Нітроґену, Хлору дорівнює номеру групи:

Ступінь окиснення металів у сполуках з Сульфуром, галогенамитаіншими неметалами відповідає заряду іона металу:

 

¯.

 

Слід мати на увазі, що, позначаючи ступінь окиснення, спочатку ставлять знак, а після нього – число. Заряд іона записують зворотним порядком: спочатку ставлять число, а потім – знак. При цьому ступінь окиснення пишуть над символом елемента, а заряд іона – праворуч від нього.

Більшість елементів може виявляти різний ступінь окиснення у сполуках. При його визначенні користуються правилом, згідно з яким сума ступенів
окиснення в електронейтральних молекулах дорівнює нулю, а у складних іонах – заряду цих іонів
.

 

1.2. Поняття про окисно-відновні реакції

Усі хімічні реакції можна розподілити на дві групи. У реакціях першої групи ступінь окиснення всіх елементів, що входять до складу речовин, залишається незмінним, а у реакціях другої групи – змінюється.

Як приклад реакцій першої групи можна навести реакцію розчинів
електролітів

 

. (1)

 

Прикладом реакцій другої групи може служити взаємодія цинку з купрум (ІІ) сульфуром:

 

. (2)

 

Якщо в реакції (І) жоден елемент не змінює ступеня окиснення, то у
прикладі (2) ступінь окиснення Цинку змінюється від 0 до +2, а Купруму – від +2 до 0.

Реакції, у результаті яких змінюються ступені окиснення елементів, називаються окисно-відновними.

Слід звернути увагу на те, що окисно-відновні процеси надзвичайно поширені у природі (засвоєння вуглекислого газу рослинами, корозія металів та ін.) і відіграють важливу роль у практичній діяльності людини (вилучення металів і неметалів з руд, використання хімічних джерел струму, боротьба з корозією, виробництво хімічних продуктів і т.п.).

З електронної точки зору окисно-відновний процес пов'язаний з переміщенням електронів від одних частинок (атомів, молекул, іонів) до інших. Так, у наведеній реакції (2) електрони від атомів Цинку переходять до іонів Купруму:

– 2 = – окиснення, відновник Zn;

(3)

+ 2 = – відновлення, окисник CuSO4;


+ = + .

 

Процес втрати частинок електронів називається окисненням, а процес приєднання електронів до частинки – відновленням. Отже, у розглянутій
реакції (2) цинк окиснюється, а іон купруму – відновлюється. У реакції ці обидва процеси протікають одночасно.

Речовина, до складу якої входить елемент, що окиснюється (тобто елемент, який втрачає електрони), називається відновником, а речовина, яка містить елемент, що відновлюється (тобто елемент, який приєднує електрони) – окисником.

У наведеному прикладі CuSO4 окисник, а Zn відновник.

З рівняння (3) видно, що атом цинку втрачає, а іон купруму приєднує два електрони.

Таким чином, при окисно-відновних реакціях загальне число електронів, що віддає відновник, повинно дорівнювати загальному числу електронів, що приєднує окисник. На цій підставі засновано існуючі методи визначення коефіцієнтів у окисно-відновних реакціях: електронного балансу та іонно-електронний.

 

Контрольні питання та завдання

 

1. Чим визначається позитивний та негативний ступені окислення елементів?

2. Чому дорівнює сума ступенів окиснення елементів у молекулах сполук?

3. Визначте ступені окиснення елементів у молекулах таких сполук:

HNO3, BaCL2, Cr2(SO4)3, (AlOH)3(PO4)2.

4. Які реакції називаються окисно-відновними?

5. Які процеси відбуваються під час окиснення та відновлення частинок?

 

2. СКЛАДАННЯ РІВНЯНЬ ОКИСНО-ВІДНОВНИХ РЕАКЦІЙ

Метод електронного балансу

 

Для запису рівняння окисно-відновної реакції треба знати властивості
взаємодіючих речовин. Питання про продукти реакції може бути вирішено
експериментально. Наприклад, при взаємодії сірководню з калій дихроматом у кислому середовищі колір розчину змінюється з оранжевого на зелений, характерний для сполук тривалентного хрому, крім того, розчин мутніє внаслідок випадання в осад сірки.

Запис вихідних речовин і продуктів реакції виглядає так:

 

. (4)

 

У тому разі, коли відомі вихідні і кінцеві продукти реакції, визначення коефіцієнтів у рівнянні цієї реакції відбувається задопомогою методу електронного балансу. Для його успішного засвоєння необхідно знати таку послідовність дій:

1. Визначають ступінь окиснення елементів у речовинах лівої і правої частин рівняння:

 

(5)

 

Позначають елементи, ступінь окиснення яких у ході реакції змінився. У нашому випадку такими елементами є Хром і Сульфур.

2. Складають рівняння електронного балансу з урахуванням загального числа атомів, які окиснилися і відновилися. У К2Сr2О7 (окисник) два атоми Хрому приєднують 6 електронів (відновлення), а у Н2S (відновник) атом Сульфуру втрачає 2 електрони (окиснення):

 

2 + 6 = 2 6 1 – відновлення, окисник K2 Cr2 O7;

6 (6)

– 2 = 2 3 – окиснення, відновник H2S.


2 + 6 + 3 - 6 = 2 + 3 . (7)

 

Виходячи з того, що число електронів, яке віддає відновник, повинно дорівнювати числу електронів, отриманих окисником, за правилом найменшого загального кратного визначають у рівнянні реакції основні коефіцієнти для відновника (3) і окисника (1), які у подальшому в багатьох випадках залишаються незмінними.

Помноживши перше рівняння на коефіцієнт (1), а друге – на (3), знаходять загальне рівняння (7) як суму перших двох. Вірність цього рівняння перевіряють за рівністю обох його частин:

– кількості відданих та приєднаних електронів (6 );

– кількості однойменних атомів (2Cr, 3S);

– сум ступенів окиснення: + 12 – 6 = + 6 + 0 → + 6 = + 6.

3. Переносять знайдені коефіцієнти перед Cr та S у вихідне рівняння з урахуванням числа атомів, що входять до складу відповідних молекул речовин:

 

(8)

 

4. Далі перевіряють число атомів металів, що не змінюють ступінь окиснення (Калію), кислотних залишків (груп ) і встановлюють коефіцієнти для K2SO4 (1) і H2SO4 (4).

5. За числом атомів гідрогену у вихідних речовинах (14) знаходять число молекул води, що утворилися (7), і записують рівняння реакції в остаточному вигляді:

 

(9)

 

6. Правильність визначення коефіцієнтів у рівнянні реакції перевіряють по числу атомів Оксигену в обох його частинах (23).

Наведена вище методика складання рівнянь може бути застосована до
більшості окисно-відновних реакцій. Проте існують спеціальні випадки, що
потребують додаткових пояснень.

 

2.2. Окремі випадки складання рівнянь

окисно-відновних реакцій

 

Розглянутий вище приклад належить до типу міжмолекулярних реакцій, у яких окисник, відновник і середовище являють собою різні речовини. Серед подібного типу зустрічаються такі, у яких окисник або відновник одночасно є і середовищем. Наприклад, реакція взаємодії калій перманґанату з концентрованою хлоридною кислотою:

 

(10)

 

Оскільки НСІ є одночасно і відновником, і середовищем, у якому протікає процес, то у рівнянні реакції доцільно формулу хлоридної кислоти записати двічі:

 

(11)

 
+ 5 = 2 – відновлення, окисник KMnO4;

– 2 = 5 – окислення, відновник HCl;

 
 


.

 

За числом атомів Калію у КМnО4 знаходять число молекул КСІ (2), а за числом атомів Хлору (6) у правій частині, що не змінили ступеня окиснення, – коефіцієнт перед НСІ-середовищем (6):

 

(12)

 

Визначають число молекул води (8) і остаточно записують рівняння:

 

(13)

 

До внутрішньомолекулярних реакцій належать такі, у яких змінюються ступені окиснення атомів у одній і тій самій молекулі. Наприклад, це реакції термічного розкладу:

 

. (14)

 
– 4 = 4 3 – окиснення, відновник KClO3;

+ 6 = 6 2 – відновлення, окисник KClO3;

 
 


.

 

 

У реакціях диспропорціювання (самоокиснення – самовідновлення ) відбувається збільшення і зменшення ступеня окиснення одного й того елемента:

 

. (15)

 
– 2 = 2 1 – окиснення, відновник HNO2;

+ = 1 2 – відновлення, окисник HNO2;

.

2.3. Складні окисно-відновні реакції

Трапляються особливі випадки добору коефіцієнтів в рівняннях окисно-відновних реакцій, в яких ступень окиснення змінюють не два, як в багатьох випадках, а три елементи. У цьому разі дотримуються такої послідовності дій:

1. Визначають ступені окиснення елементів, що входять до складу сполук у обох частинах рівняння окисно-відновної реакції, та виділяють елементи, ступені окиснення яких змінюються:

 

. (16)

 

2. Складають рівняння напівреакцій окиснення і відновлення:

 

2 – 4 = 2 – окиснення

3 – 24 = 3 – окиснення (17)

+ 3 = – відновлення

 

3. Підсумовують перше та друге рівняння окиснення та :

 

2 +3 – 28 = 2 + 3 . (18)

 

4. Об'єднують рівняння (18) з рівнянням відновлення і далі методом електронного балансу визначають коефіцієнти:

 

2 +3 – 28 = 2 + 3 28 3 – окиснення, відновник ;

84 (19)

+ 3 = 3 28 – відновлення, окисник ;

 
 


. (20)

 

5. Переносять знайдені коефіцієнти у вихідне молекулярне рівняння з урахуванням числа атомів в молекулах речовин:

 

. (21)

 

6. За кількістю атомів Гідрогену, яке дорівнює 36 у правій частині рівняння, знаходять, що число молекул води у лівій частині дорівнює 4:

 

. (22)

7. Правильність визначення коефіцієнтів перевіряють за рівністю атомів Оксигену, що дорівнює 88 у обох частинах рівняння окисно-відновної реакції.

 







Дата добавления: 2015-09-04; просмотров: 758. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия