СТРОЕНИЕ ГЕМОГЛОБИНА
Пространственная структура молекулы гемоглобина в деталях изучена методом рентгеноструктурного анализа еще в конце 40-х гг. XX в., главным образом благодаря работам английского биофизика М. Перутца [2]. За эти исследования он был удостоен Нобелевской премии. Гемоглобин является сложным белком, представленным двумя частями: небелковая планарная часть - гем (4 % молекулы гемоглобина) и белковая олигомерная глобула (96 %) [3]. Гем (протогем) - тетрапиррольная ароматическая структура протопорфирина IX, в состав которого обязательно входит ион Fe2+. SР2-гибридные атомы С и N π-электронной системы порфиринового лиганда обеспечивают его плоскостную структуру [4, 9]. Рис 1. Структура гемоглобина
Гем является простетической группой гемсодержащих белков, обеспечивающей их главные функции: связывание и транспорт кислорода, участие в цепи переноса электронов, восстановление кислорода до воды, микросомальное окисление, разложение перекисей и др. Присутствие иона Fе2+ и ароматическая природа тетрапиррольного ядра обеспечивают интенсивную окраску гема, что и позволяет относить гемсодержащие белки к классу хромопротеидов [3, 10]. В состав порфиринового ядра гема входит ион Fе2+. Именно ион Fе2+, но не Fе3+, может связываться с кислородом. Свободные ионы Fе2+ спонтанно окисляются до Fе3+, поэтому неорганическое железо не может быть хорошим переносчиком кислорода. Fе2+ в составе гема (без глобина) может связывать кислород, но и оно быстро окисляется, образуя гематин. Поэтому (а также в силу плохой растворимости в воде) свободный гем тоже не способен к транспорту кислорода [11]. Глобин — белковый компонент гемоглобина - принадлежит к группе гистонов. Число аминокислотных остатков в полипептидной цепи разных типов колеблется в диапазоне от 140 до 150, причем чаще встречаются числа 141, 146, 153. В состав протомеров гемоглобина человека входит либо 141 (α-цепь), либо 146 (β-, γ-, δ-цепи) аминокислотных остатков [3, 4, 9, 12]. Вторичная структура гемоглобинов представлена α-спиралью. Полипептидные цепи в ге-моглобиновой молекуле более чем на 70 % представлены скрученными в α-геликсовые спирали, фрагменты которых разделены участками, образующими изгибы вторичной цепи. В результате такой укладки образуются третичные глобулы овоидной формы [13]. Число спирализованных участков различно у разных цепей Нb. α-Цепь имеет 7 таких доменов, β-цепь - 8. Спирализованные фрагменты гемоглобина обозначают латинскими буквами, начиная с О конца полипептидной цепи (например, в α-субъединице: А, В, С, D, Е, F, Н). Пространственная компоновка третичной структуры субъединиц гемоглобина соответствует принципам третичной укладки большинства глобулярных белков: максимальная компактность, гидрофобные аминокислотные радикалы расположены внутри глобулы, большинство гидрофильных аминокислотных остатков располагаются на поверхности протомера [3]. Физиологической формой четвертичной структуры гемоглобинов человека является тетрамерная. Все четыре протомера гемоглобина располагаются пространственно в определенном соотношении («кватернерная структура»), образуя по отношению друг к другу тетраэдрическую конфигурацию. Тетрамер гемоглобина - сфероид длиной 64А, шириной 55А и высотой 50А [6]. Каждая сведбергова единица находится в контакте с тремя другими сведберговыми единицами, рыхло связанными между собой нековалентными связями (водородными, солевыми и, в основном, гидрофобными). Неполярные гидрофобные связи, будучи обращенными внутрь белка, играют главную роль в стабилизации четвертичной структуры гемоглобина [13, 14].
|