Последствия мультиколлинеарности
Обычно выделяются следующие последствия мультиколлинеарности: 1. Большие дисперсии (стандартные ошибки) оценок. Это затрудняет нахождение истинных значений определяемых величин и расширяет интервальные оценки, ухудшая их точность. 2. Уменьшаются -статистики коэффициентов, что может привести к неоправданному выводу о существенности влияния соответствующей объясняющей переменной на зависимую переменную. 3. Оценки коэффициентов по МНК и их стандартные ошибки становятся очень чувствительными к изменениям данных, т.е. они становятся неустойчивыми. 4. Затрудняется определение вклада каждой из объясняющих переменных в объясняемую уравнением регрессии дисперсию зависимой переменной. 5. Возможно получение неверного знака у коэффициента регрессии.
|