Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Процедура последовательного присоединения элементов





Переход к меньшему числу объясняющих переменных может уменьшить дублирование информации, доставляемой сильно взаимозависимыми признаками. Именно с этим мы сталкиваемся в случае мультиколлинеарности объясняющих переменных.

Пусть - множественный коэффициент корреляции между зависимой переменной и набором объясняющих переменных . Он определяется как обычный парный коэффициент корреляции между и линейной функцией регрессии . Пусть - матрица обратная к матрице :

(54)

Тогда квадрат коэффициента может быть вычислен по формуле

, (55)

где - определитель матрицы .

Подправленная на несмещенность оценка коэффициента детерминации имеет вид

. (56)

(Если по формуле (56) получают отрицательное число, то полагают ).

Нижняя доверительная граница для определяется по формуле

(57)

На практике, при решении вопроса о том какие объясняющие переменные следует включать в модель, часто используют процедуру последовательного присоединения элементов.

1-й шаг . Выбирается наиболее информативная объясняющая переменная, которая максимизирует величину . При этом совпадает с квадратом обычного парного коэффициента корреляции . Пусть , тогда наиболее информативной будет переменная . Затем рассчитывают подправленный на несмещенность коэффициент и его нижнюю доверительную границу .

2-й шаг . Среди всевозможных пар объясняющих переменных выбирается та, которая максимизирует величину . Пусть , тогда наиболее информативной будет пара . Затем рассчитывают подправленный на несмещенность коэффициент и его нижнюю доверительную границу .

Процедуру продолжают до тех пор, когда на шаге выполнится условие

. (58)

Тогда в модель включают наиболее информативные переменные, полученные на первых шагах. Отметим, что в расчетах используют формулы (56) и (57) в которых вместо берут соответствующее значение номера шага .

Используют и другие методы устранения мультиколлинеарности.

Рассмотрим пример 5. Имеются следующие условные данные (табл. 6).

Таблица 6.

  1,5 0,7  
  2,5 1,2  
    1,4  
  5,5 1,9  
    2,5  
    3,1  
  2,8 3,5  
  0,5    
    3,8  
    5,3  

 

Рассмотрим влияние на зависимую переменную каждой из объясняющих переменных в отдельности. Вычисляя парные коэффициенты корреляции, получим, что наибольшее значение имеет коэффициент = =0,602. Тогда , .

Рассмотрим влияние на зависимую переменную пар переменных . Сначала рассмотрим влияние пары переменных .

, .

Затем рассмотрим влияние пары переменных .

, .

Таким образом, следует выбрать пару переменных . , .

Рассмотрим влияние на зависимую переменную трех переменных .

, , , .

Таким образом, следуя рекомендациям метода последовательного присоединения переменных, в уравнение следует включить все три объясняющие переменные. Однако , поэтому введение в уравнение третьей переменной почти не изменяет коэффициента детерминации. Кроме того, переменные сильно коррелируют друг с другом, поэтому следует предпочесть модель .

 







Дата добавления: 2015-09-04; просмотров: 706. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия