Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Процедура последовательного присоединения элементов





Переход к меньшему числу объясняющих переменных может уменьшить дублирование информации, доставляемой сильно взаимозависимыми признаками. Именно с этим мы сталкиваемся в случае мультиколлинеарности объясняющих переменных.

Пусть - множественный коэффициент корреляции между зависимой переменной и набором объясняющих переменных . Он определяется как обычный парный коэффициент корреляции между и линейной функцией регрессии . Пусть - матрица обратная к матрице :

(54)

Тогда квадрат коэффициента может быть вычислен по формуле

, (55)

где - определитель матрицы .

Подправленная на несмещенность оценка коэффициента детерминации имеет вид

. (56)

(Если по формуле (56) получают отрицательное число, то полагают ).

Нижняя доверительная граница для определяется по формуле

(57)

На практике, при решении вопроса о том какие объясняющие переменные следует включать в модель, часто используют процедуру последовательного присоединения элементов.

1-й шаг . Выбирается наиболее информативная объясняющая переменная, которая максимизирует величину . При этом совпадает с квадратом обычного парного коэффициента корреляции . Пусть , тогда наиболее информативной будет переменная . Затем рассчитывают подправленный на несмещенность коэффициент и его нижнюю доверительную границу .

2-й шаг . Среди всевозможных пар объясняющих переменных выбирается та, которая максимизирует величину . Пусть , тогда наиболее информативной будет пара . Затем рассчитывают подправленный на несмещенность коэффициент и его нижнюю доверительную границу .

Процедуру продолжают до тех пор, когда на шаге выполнится условие

. (58)

Тогда в модель включают наиболее информативные переменные, полученные на первых шагах. Отметим, что в расчетах используют формулы (56) и (57) в которых вместо берут соответствующее значение номера шага .

Используют и другие методы устранения мультиколлинеарности.

Рассмотрим пример 5. Имеются следующие условные данные (табл. 6).

Таблица 6.

  1,5 0,7  
  2,5 1,2  
    1,4  
  5,5 1,9  
    2,5  
    3,1  
  2,8 3,5  
  0,5    
    3,8  
    5,3  

 

Рассмотрим влияние на зависимую переменную каждой из объясняющих переменных в отдельности. Вычисляя парные коэффициенты корреляции, получим, что наибольшее значение имеет коэффициент = =0,602. Тогда , .

Рассмотрим влияние на зависимую переменную пар переменных . Сначала рассмотрим влияние пары переменных .

, .

Затем рассмотрим влияние пары переменных .

, .

Таким образом, следует выбрать пару переменных . , .

Рассмотрим влияние на зависимую переменную трех переменных .

, , , .

Таким образом, следуя рекомендациям метода последовательного присоединения переменных, в уравнение следует включить все три объясняющие переменные. Однако , поэтому введение в уравнение третьей переменной почти не изменяет коэффициента детерминации. Кроме того, переменные сильно коррелируют друг с другом, поэтому следует предпочесть модель .

 







Дата добавления: 2015-09-04; просмотров: 706. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия