Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Процедура последовательного присоединения элементов





Переход к меньшему числу объясняющих переменных может уменьшить дублирование информации, доставляемой сильно взаимозависимыми признаками. Именно с этим мы сталкиваемся в случае мультиколлинеарности объясняющих переменных.

Пусть - множественный коэффициент корреляции между зависимой переменной и набором объясняющих переменных . Он определяется как обычный парный коэффициент корреляции между и линейной функцией регрессии . Пусть - матрица обратная к матрице :

(54)

Тогда квадрат коэффициента может быть вычислен по формуле

, (55)

где - определитель матрицы .

Подправленная на несмещенность оценка коэффициента детерминации имеет вид

. (56)

(Если по формуле (56) получают отрицательное число, то полагают ).

Нижняя доверительная граница для определяется по формуле

(57)

На практике, при решении вопроса о том какие объясняющие переменные следует включать в модель, часто используют процедуру последовательного присоединения элементов.

1-й шаг . Выбирается наиболее информативная объясняющая переменная, которая максимизирует величину . При этом совпадает с квадратом обычного парного коэффициента корреляции . Пусть , тогда наиболее информативной будет переменная . Затем рассчитывают подправленный на несмещенность коэффициент и его нижнюю доверительную границу .

2-й шаг . Среди всевозможных пар объясняющих переменных выбирается та, которая максимизирует величину . Пусть , тогда наиболее информативной будет пара . Затем рассчитывают подправленный на несмещенность коэффициент и его нижнюю доверительную границу .

Процедуру продолжают до тех пор, когда на шаге выполнится условие

. (58)

Тогда в модель включают наиболее информативные переменные, полученные на первых шагах. Отметим, что в расчетах используют формулы (56) и (57) в которых вместо берут соответствующее значение номера шага .

Используют и другие методы устранения мультиколлинеарности.

Рассмотрим пример 5. Имеются следующие условные данные (табл. 6).

Таблица 6.

  1,5 0,7  
  2,5 1,2  
    1,4  
  5,5 1,9  
    2,5  
    3,1  
  2,8 3,5  
  0,5    
    3,8  
    5,3  

 

Рассмотрим влияние на зависимую переменную каждой из объясняющих переменных в отдельности. Вычисляя парные коэффициенты корреляции, получим, что наибольшее значение имеет коэффициент = =0,602. Тогда , .

Рассмотрим влияние на зависимую переменную пар переменных . Сначала рассмотрим влияние пары переменных .

, .

Затем рассмотрим влияние пары переменных .

, .

Таким образом, следует выбрать пару переменных . , .

Рассмотрим влияние на зависимую переменную трех переменных .

, , , .

Таким образом, следуя рекомендациям метода последовательного присоединения переменных, в уравнение следует включить все три объясняющие переменные. Однако , поэтому введение в уравнение третьей переменной почти не изменяет коэффициента детерминации. Кроме того, переменные сильно коррелируют друг с другом, поэтому следует предпочесть модель .

 







Дата добавления: 2015-09-04; просмотров: 706. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия