Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

II. Сприймання і усвідомлення нового матеріалу.





Хід уроку

І. Аналіз контрольної роботи.

II. Сприймання і усвідомлення нового матеріалу.

На уроках математики ви неодноразово розв'язували задачу: обчислити значення функції у = f(x) при заданому значенні х 0аргументу. Іноді потрібно розв'язати і обернену задачу: обчислити значення аргументу х, при якому функція у = f(x) набуває даного значення у 0.

При розв'язуванні оберненої задачі виникають питання: Скільки таких значень існує? При яких умовах задача має єдиний розв'язок?

Розглянемо приклади.

Приклад 1. Нехай задано функцію у = 2 х + 1. Щоб знайти значення аргументу х, при яких функція дорівнює у 0, треба розв'я­зати рівняння у0 = 2х + 1. Розв'язавши його 2 х = у 0 - 1; , маємо, що для будь-якого у0 рівняння у0 = 2х + 1 має і притому тільки один корінь.

Приклад 2. Для функції у = х2 рівняння у0 = х2 при у0 > 0 має два корені: х 1 = = - ; х 2 = .

!

Функція, яка набуває кожного свого значення в єдиній точці області визначення, називається оборотною. Таким чином, функція у = 2х + 1 — оборотна, а функція у = х2 (визначена на всій числовій осі) не є оборотною.

Залежність із прикладу 1: виражає х як деяку функцію від у (аргумент цієї функції позначений літерою у, а значення функції — літерою х). Перейшовши до звичних позначень (аргумент — х, функція — у), матимемо функцію: , яка називається оберненою до функції у = 2х + 1.

Побудуємо графіки функцій у = 2х + 1 і в одній системі координат (рис. 102), графіки цих функцій розташовані симетрично від­носно бісектриси першого і третього координатних кутів.

Підведемо підсумки:

1) Якщо функція у = f(x) задана формулою, то для знаходжен­ня оберненої функції потрібно розв'язати рівняння f(x) = у відносно х, а потім поміняти місцями х і у. Якщо рівняння f(x) = у має більше ніж один корінь, то функції, оберненої до функції у = f(x) не існує.

2) Графіки даної функції і оберненої до даної симетричні відносно прямої у = х.

3) Якщо функція у = f(x) зростає (спадає) на деякому проміжку, то вона оборотна. Обернена функція до даної, визначена області значень функції у = f(x), також є зростаючою (спадною).







Дата добавления: 2015-09-04; просмотров: 440. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия