Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

II. Сприймання і усвідомлення нового матеріалу.





Хід уроку

І. Аналіз контрольної роботи.

II. Сприймання і усвідомлення нового матеріалу.

На уроках математики ви неодноразово розв'язували задачу: обчислити значення функції у = f(x) при заданому значенні х 0аргументу. Іноді потрібно розв'язати і обернену задачу: обчислити значення аргументу х, при якому функція у = f(x) набуває даного значення у 0.

При розв'язуванні оберненої задачі виникають питання: Скільки таких значень існує? При яких умовах задача має єдиний розв'язок?

Розглянемо приклади.

Приклад 1. Нехай задано функцію у = 2 х + 1. Щоб знайти значення аргументу х, при яких функція дорівнює у 0, треба розв'я­зати рівняння у0 = 2х + 1. Розв'язавши його 2 х = у 0 - 1; , маємо, що для будь-якого у0 рівняння у0 = 2х + 1 має і притому тільки один корінь.

Приклад 2. Для функції у = х2 рівняння у0 = х2 при у0 > 0 має два корені: х 1 = = - ; х 2 = .

!

Функція, яка набуває кожного свого значення в єдиній точці області визначення, називається оборотною. Таким чином, функція у = 2х + 1 — оборотна, а функція у = х2 (визначена на всій числовій осі) не є оборотною.

Залежність із прикладу 1: виражає х як деяку функцію від у (аргумент цієї функції позначений літерою у, а значення функції — літерою х). Перейшовши до звичних позначень (аргумент — х, функція — у), матимемо функцію: , яка називається оберненою до функції у = 2х + 1.

Побудуємо графіки функцій у = 2х + 1 і в одній системі координат (рис. 102), графіки цих функцій розташовані симетрично від­носно бісектриси першого і третього координатних кутів.

Підведемо підсумки:

1) Якщо функція у = f(x) задана формулою, то для знаходжен­ня оберненої функції потрібно розв'язати рівняння f(x) = у відносно х, а потім поміняти місцями х і у. Якщо рівняння f(x) = у має більше ніж один корінь, то функції, оберненої до функції у = f(x) не існує.

2) Графіки даної функції і оберненої до даної симетричні відносно прямої у = х.

3) Якщо функція у = f(x) зростає (спадає) на деякому проміжку, то вона оборотна. Обернена функція до даної, визначена області значень функції у = f(x), також є зростаючою (спадною).







Дата добавления: 2015-09-04; просмотров: 440. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия