Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель Мальтуса одновидової популяції





Розглянемо модель одновидової біологічної популяції. Через позначимо кількість особин у момент часу . Наша мета – вивести закон зміни кількості особин із часом. Для цього, згідно з принципами математичного моделювання, зробимо деякі спрощувальні припущення. А саме: будемо вважати, що дана популяція існує ізольовано й на деякій території розміщена однорідно. Пізніше ми ці припущення дещо послабимо.

Виберемо закон, згідно з яким відбувається розвиток популяцій. За основу візьмемо відомий закон Мальтуса: швидкість зміни популяції пропорційна величині популяції з певним коефіцієнтом, що є різницею між коефіцієнтом народжуваності і смертності . За цих припущень можна отримати закон зміни чисельності популяцій, що в математичній формі має вигляд

. (2.1.5)

З формули (2.1.5) можна зробити висновки про зміни чисельності з часом. Так, якщо (миттєва народжуваність більша за миттєву смертність), то при ; якщо , то – чисельність із часом не змінюється; якщо – чисельність популяції прямує до нуля.

З математичного погляду дана модель є дуже зручною, оскільки її можна повністю дослідити. Зокрема, з неї випливає результат, який ще у 1798 р. отримав Мальтус і запропонував свою “похмуру теорію”: людство може вижити, тільки якщо періоди зростання в геометричній прогресії будуть перериватися епідеміями, війнами й стихійними лихами. Дійсно, це той випадок, коли і при . Насправді це не так. Модель Мальтуса дуже наближено відповідає оригіналу, коли інтервали часу є невеликими. Її можна розглядати лише як перше наближення до реального процесу.

Дуже складний процес зміни чисельності населення, залежний до того ж від свідомого втручання самих людей, не може описуватись простими законами. Навіть в ідеальному випадку ізольованої біологічної популяції запропонована модель не відповідає реальності повною мірою хоча б через обмеженість ресурсів, необхідних для її існування. З цього випливає так званий ефект насичення.

Вправа. За яких умов на і є:

1) обмеженою при ;

2) періодичною?

 

1.2.2. Модель одновидової популяції з урахуванням насичення (логістична модель)

Більш точна модель має враховувати конкурентну боротьбу в обмеженому життєвому просторі. Зробимо відносно моделі таке припущення, що підтверджується практичними спостереженнями: середньостатистична кількість попарних сутичок у популяції за одиницю часу пропорційна . Тоді рівняння балансу “зміна кількості” = “приріст” – “втрати” можна подати у вигляді

. (2.1.6)

Це рівняння вивів у 1837 р. данський учений Ферхюльст. Воно називається логістичним і є математичною моделлю одновидової популяції з урахуванням ефекту насичення.

Проаналізуємо дану математичну модель. Основна вимога до неї – досить точно описувати реальний процес за великих значень . З математичного погляду цій вимозі відповідає нелінійне рівняння Ріккатті, загальний розв’язок якого може бути знайденим у квадратурах шляхом його зведення до лінійного. Однак точні формули виявляються досить громіздкими для практичного користування. Проте нас цікавить лише асимптотична поведінка розв’язків при . Таке дослідження у випадку, коли і є сталими, можна провести й без інтегрування рівняння (2.1.6).

Заміною змінних і рівняння (2.1.6) можна звести до вигляду

, (2.1.7)

тобто коефіцієнти і можна вважати рівними 1.

Розв’язки залежать від зміни знаків функції . Очевидно, що при і при (нас цікавить випадок ).

Отже, дане рівняння має два положення рівноваги: і , причому перше з них є нестійким, а друге – асимптотично стійким, усі розв’язки при наближуються до нього. Поведінку інтегральних кривих зображено на рис. 2.1.1.

 

Рис. 2.1.1

 

Отже, у логістичній моделі всі розв’язки з часом прямують до рівноважного стану, і ніякого перенаселення, як стверджував Мальтус, бути не може.

 







Дата добавления: 2015-09-04; просмотров: 2125. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия