Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель багатовидової популяції





Наступною ланкою в ієрархічному ланцюзі є перехід до моделі багатовидової популяції. Розглянемо таку модель, а також укажемо на задачі, пов’язані з нею. Розв’язання таких задач може стати темою подальших наукових досліджень і кваліфікаційних робіт різного рівня.

Нехай – кількість особин і-го виду . Математичною моделлю їх співіснування є узагальнення моделі Лотки – Вольтерра на рівнянь

, (2.1.14)

де – коефіцієнти системи.

Аналогічно можна переконатися, що перший квадрант є фазовим простором даної системи. При її дослідженні (навіть у випадку сталих коефіцієнтів) виникає низка серйозних математичних проблем, відповідь на які потрібно отримати в термінах коефіцієнтів системи, тобто функцій і :

1. Дослідити умови конкурентного зникнення одного чи кількох видів, тобто умови, за яких при для деяких .

2. Знайти умови обмеженості числа особин певного виду, тобто щоб для деяких .

3. Знайти умови періодичності зміни числа особин

4. Дослідити умови перманентності системи (2.1.14).

Останнє означає існування в першому квадранті деякої компактної множини , що має таку властивість: усі розв’язки системи (2.1.14), починаючи з деякого моменту часу (для кожного розв’язку – свого), лежать у даній множині.

З погляду біологічних популяцій, умови перманентності означають умови “мирного” співіснування всіх видів, коли жоден з видів не зникає.

 







Дата добавления: 2015-09-04; просмотров: 437. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия