Из истории логики
Платон настаивай на божественном происхождении человеческого разума. Бог создал зрение, говорил он, и вручил его нам, чтобы мы видели на небе движение Разума мира и использовали его для руководства движениями нашего собственного разума. Человеческий разум – только воспроизведение той разумности, которая господствует в мире и которую мы улавливаем, благодаря милости бога. – 8 – Первый развернутый и обоснованный ответ на вопрос о природе и принципах человеческого мышления дал Аристотель. «Принудительную силу наших речей» он объяснил существованием особых законов – логических законов мышления. Именно они заставляют принимать одни утверждения вслед за другими и отбрасывать несовместимое с принятым. К числу необходимого, отмечал Аристотель, принадлежит доказательство, так как если что-то безусловно доказано, то иначе уже не может быть; и причина этому – исходные посылки. Подчеркивая безоговорочность логических законов и необходимость всегда следовать им, он замечает: «Мышление – это страдание», ибо «коль вещь необходима, в тягость она нам». Сейчас принято, конечно, думать иначе: чем больше законов природы и общества известно человеку, тем шире его свобода. С работ Аристотеля началось систематическое изучение логики и ее законов. История логики насчитывает, таким образом, около двух с половиной тысяч лет. Раньше логики возникли, пожалуй, только математика, философия и теория аргументации, называвшаяся в древности «риторикой». Интересно отметить, что примерно в этот же период логическая теория мышления начала складываться в Древней Индии и в Древнем Китае. Однако развивалась она там медленно и неуверенно и за многие века мало чего добилась. Проблема в своеобразии культуры данных регионов, и, прежде всего, в отсутствии острой необходимости в строго рациональном мышлении. Для развития логики имеется хорошая почва в тех обществах, которые строятся на принципах демократии и в которых процедура убеждения опирается не на традицию, и тем более не на принуждение или прямое насилие, а главным образом на доказательную речь. История логики отчетливо разделяется на два основных этапа. Первый из них, именуемый теперь традиционной логикой, начался с Аристотеля и продолжался до второй половины XIX в. – начала XX в., второй – с этого времени до наших дней. На первом этапе логика развивалась очень медленно, что дало Канту повод заявить, что она подобно геометрии, является с самого начала завершенной наукой, не продвинувшейся после ее возникновения ни на один шаг. Ошибочность такого представления была ясно показана в последние сто с небольшим лет, когда в логике произошла научная революция и на смену традиционной логике пришла современная логика, называемая также математической или символической. У истоков последней стоял Г.В.Лейбниц, выдвинувший идею представить доказательство как вычисление, подобное вычислению в математике. – 9 – Определением «современная» новый этап противопоставляется традиционной логике, отличительной чертой которой было то, что она пользовалась при описании правильных способов рассуждения естественным языком, дополненным немногими специальными символами. Традиционная и современная логика не являются, разумеется, двумя разными, существующими параллельно дисциплинами, они представляют собой два последовательных периода в развитии одной и той же науки. Основное содержание традиционной логики вошло в современную логику, хотя многое оказалось при этом переосмысленным. «По существу, старая традиционная логика образует только фрагмент новой, да к тому же такой фрагмент, какой, с точки зрения потребностей других наук, и особенно математики, совершенно лишен значительности». Определение «математическая» подчеркивает сходство новой логики с математикой, основывающееся прежде всего на применении особою символического языка, аксиоматического метода и формализации. Математическая логика является исследованием предмета формальной логики методом построения специальных формализованных языков, или исчислений. Они позволяют избежать двусмысленности и логической неясности естественного языка. Новые методы дали логике такие преимущества, как большая точность формулировок, возможность изучения более сложных с точки зрения логической формы объектов. Многие из проблем, исследуемых в математической логике вообще невозможно сформулировать с использованием только традиционных методов. Определение «символическая» указывает на особенность применяемых логикой искусственных языков. Слова обычного языка заменяются в них специальными символами. Введение формализованного символического языка означает принятие особой теории логического анализа рассуждений. Символы применял в ряде случаев еще Аристотель, а затем и все последующие логики. Однако в символической логике в использовании символики был сделан качественно новый шаг: ее языки содержат только специальные символы. В настоящее время имена «математическая логика» и «символическая логика» постепенно становятся все менее употребительными. Д.Буль истолковал умозаключение как результат решения логических равенств, в результате чего теория умозаключения приняла вид своеобразной алгебры, отличающейся от обычной алгебры лишь отсутствием численных коэффициентов и степеней. С работ Г.Фреге начинается применение логики для исследования оснований математики. – 10 – Значительный вклад в развитие логики в дальнейшем внесли Б.Рассел, А.Н.Уайтхед, Д.Гильберт и др. В 30-е годы фундаментальные результаты получили К.Гедель, А.Тарский, А.Чёрч. Математическая, или символическая, логика возникла на стыке двух очень разных наук: философии, частью которой всегда считалась логика, и математики. Революция в логике, в корне изменившая ее лицо, была связана, прежде всего, с проникновением в «философскую логику» математических методов, т.е. методов, традиционно применявшихся в математике. В первый период новая логика ориентировалась почти всецело на математические рассуждения, и эта связь с математикой была настолько тесной, что до сих пор в имени «математическая логика» прилагательное «математическая» иногда истолковывается как указывающее не только на своеобразие методов новой логики, но и на сам ее предмет. Эта логика не является, конечно, логическим исследованием исключительно математического доказательства. Она представляет собой современную теорию всякого правильного рассуждения, «логику по предмету и математику по методу», как охарактеризовал ее когда-то П.С.Порецкий. Тем не менее, в классических, сложившихся первыми разделах математической логики многое было отражением определенного своеобразия математического рассуждения. Кроме того, связь по преимуществу с одной наукой, математикой, поддерживала иллюзию, будто логика движется в силу только внутренних импульсов и ее развитие совершенно не зависит от эволюции теоретического мышления и не является в каком-либо смысле отображением последней. Не успела классическая математическая логика сложиться и окрепнуть, как началась энергичная ее критика. Эта критика велась с разных направлений. Результатом ее явилось возникновение целого ряда новых разделов современной логики, составивших в совокупности неклассическую логику. В ряде случаев оказалось, что реализованные при этом идеи активно обсуждались еще в античной и средневековой логике, но были основательно забыты в Новое время. Несмотря на свои очевидные недостатки, классическая логика высказываний и логика предикатов, остаются, тем не менее, ядром современной логики, сохраняющим свою теоретическую и практическую значимость. Явившись тем образцом, от которого отталкивались разнообразные неклассические системы, классическая логика, как правило, оказывается в определенном смысле предельным и притом наиболее простым случаем последних. Многие из них могут быть представлены как расширения классической логики, обогащающие ее выразительные средства. – 11 – Неклассическая логика представляет собой совокупность достаточно разнородных логических теории, возникших в известной оппозиции к классической логике и являющихся во многом не только критикой последней и попыткой ее усовершенствования, но также ее дополнением и дальнейшим развитием идей, лежащих в основе современной логики. В 1908 г. Л.Брауэр подверг сомнению неограниченную применимость в математических рассуждениях классических законов исключенного третьего, (снятия) двойного отрицания, косвенного доказательства. Одним из результатов анализа таких рассуждений явилось возникновение интуиционистской логики, сформулированной в 1930 г. А.Гейтингом и не содержащей указанных законов. Еще в 1912 г. К.И.Льюис обратил внимание на так называемые «парадоксы импликации», характерные для формального аналога условного высказывания в классической логике – материальной импликации. В дальнейшем Льюис разработал первую неклассическую теорию логического следования, в основе которой лежало понятие строгой импликации, определявшееся в терминах логической невозможности. К настоящему времени предложен целый ряд теорий, претендующих на более адекватное, чем даваемое классической логикой описание логического следования и условной связи. Наибольшую известность из них получила релевантная логика, развитая А.Р.Андерсоном и Н.Д.Белнапом. На рубеже 20-х годов Льюисом и Я.Лукасевичем были построены первые модальные логики, рассматривающие понятия необходимости, возможности, случайности и т.п. Тем самым в современной логике была возрождена тема модальностей, которой активно занимались еще Аристотель и средневековые логики. В 20-е годы начали складываться также многозначная логика, предполагающая, что утверждения являются не только истинными или ложными, но могут иметь и другие истинностные значения; деонтическая логика, изучающая логические связи нормативных высказываний, логика абсолютных оценок, исследующая логическую структуру и логические связи оценочных высказываний; вероятностная логика, попытавшаяся, но безуспешно использовать теорию вероятностей для анализа индуктивных рассуждений, и др. Все эти новые разделы не были непосредственно связаны с математикой, в сферу логического исследования вовлекались уже естественные, социальные и гуманитарные науки. – 12 – В дальнейшем сложились и нашли интересные применения логика времени, описывающая логические связи высказываний, у которых временной параметр включается в логическую форму; паранепротиворечивая логика, не позволяющая выводить из противоречий все, что угодно; эпистемическая логика. изучающая понятия «опровержимо», «неразрешимо», «доказуемо», «убежден», «сомневается» и т.п.; .логика предпочтений, имеющая дело с высказываниями, содержащими понятия «лучше», «хуже», «равноценно»: .логика абсолютных оценок, описывающая логические связи высказываний с абсолютными оценочными понятиями «хорошо», «плохо» и «безразлично»; логика изменения, говорящая об изменении и становлении; логика причинности, изучающая логические связи утверждений о причинности, и др. Экстенсивный рост логики не завершился и сейчас.
|