Растения и многие виды бактерий содержат ферментные системы, необходимые для синтеза всех требуемых a -кетокислот. Животные утратили способность синтезировать некоторые a -кетокислоты. Эти a -кетокислоты соответствуют незаменимым аминокислотам. Другие a -кетокислоты (соответствующие заменимым аминокислотам) могут образовываться в результате метаболизма иных веществ, в основном из глюкозы.
Последней реакцией в синтезе аминокислот из a -кетокислот является реакция трансаминирования, в ходе которой аминогруппа переносится от донорной аминокислоты к акцепторной a-кетокислоте. В результате получается a-кетокислота из донорной аминокислоты и новая аминокислота. Реакцию катализируют ферменты аминотрансферазы (трансаминазы) с участием кофермента пиридоксальфосфата (производное витамина В6). Эта реакция легко обратима. Любые аминокислоты, которых в пище недостаточно, можно получить за счет имеющихся в избытке, при наличии соответствующих a -кетокислот:
Аминотрансферазы
|
Трансаминирование происходит практически во всех органах. Большинство промежуточных продуктов важных метаболических путей являются кетокислотами, которые могут включаться в трансаминирование:
Трансаминирование
|
Многие аминотрансферазы предпочтительно используют a-кетоглутарат как акцептор аминогруппы. При этом образуется глутамат, а в обратной реакции a -кетоглутарат. Пара a -кетоглутарат и глутамат широко участвуют в метаболическом потоке азота. Например, с помощью реакций трансаминирования осуществляется «переброска» аминного азота из мышц в печень. В работающей мышце происходит образование аланина из пировиноградной кислоты путем трансаминирования с глутаматом. Аланин поступает в кровь и затем поглощается печенью. В печени происходит обратная реакция, в результате которой образуется пируват, реализуемый в глюконеогенезе.
Глюкозо-аланиновый цикл
|
Глюкоза может поступать в работающую мышцу. Создается глюкозо-аланиновый цикл, который служит для переноса из мышц в печень пирувата и азота.