Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод половинного деления





Лабораторная работа №1

«Методы решения уравнений»

Выполнил: студент группы Э2 – С10

ФЭ факультета

Холькин И.А.

Проверил: Чистозвонова Е.А.

 

Обнинск 2012


Метод половинного деления

Предположим, что корень отделён на отрезке [a, b] и знаки f(a) и f(b) различны (функция f(x) меняет знак при переходе через корень x*).

Положим a0=a, и b0 =b и вычислим значения функции в левом конце отрезка, f(a0), и в его середине с0=(a0+b0)/2: f(c0). Сравним знаки чисел f(a0) и f(c0). Если эти знаки различны, то корень x* лежит в интервале (a0, c0); если же одинаковы, то тогда различны знаки f(c0) и f(b0)., и корень лежит в интервале (c0, b0). (Возможен ещё случай f(c0)=0; тогда корень x* уже найден.) В обоих случаях смены знака корень оказывается отделён на отрезке [a0, c0] либо [c0, b0], длина которого ровно в два раза меньше длины исходного отрезка [a0, b0]= [a, b]. Обозначим этот отрезок половинной длины через [a1, b1] (то есть положим a1=a0; b1=c0 в случае, когда f(a0) и f(c0) разных знаков, и a1=c0; b1=b0 в случае, когда f(a0) и f(c0) одного знака).

Далее повторим процесс для отрезка [a1, b1]: снова отыщем его середину c1, найдём значение функции f(c1) и сравним знак этого числа со знаком f(a1); если знаки разные, то корень отделён на [a2, b2]= [a1, c1], если одинаковые, то на [a2, b2]= [c1, b1] (или же оказывается, что f(c1)=0; тогда корень найден). Длина отрезка, на котором отделён корень, уменьшилась ещё в два раза.

Поступая тем же образом и далее, получаем, что после k делений длина отрезка, на котором лежит корень, сокращается в 2k раз и становится равной δk =(b-a)/2k ( если корень не был точно определён на каком-то предыдущем этапе, то есть не совпал с ci при некотором i). Пусть ε- заданная точность, с которой требуется отыскать корень. Процесс деления отрезков следует остановить, как только станет верным неравенство k ≤ε. Очевидно, что если при этом положить x**=ck=(b-a)/2 то расстояние от корня x*, лежащего где-то в интервале (ak;bk), до середины этого интервала x** будет не больше ε, то есть приближённое равенство x*≈x** будет выполнено с нужной точностью.







Дата добавления: 2015-09-04; просмотров: 341. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия