Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция принадлежности на универсальной шкале





Обычно функции принадлежности формируются на основе данных, получаемых от специалистов в моделируемой предметной области (экспертов). При этом функция принадлежности строится на предметной шкале. Если пределы универсального множества Х изменяются, придется вновь прибегать к опросу экспертов для построения функций принадлежности. Для некоторых задач можно избежать этого этапа с помощью использования универсальных шкал. Для этого используется преобразование, отображающее значения функции принадлежности на отрезок [0;1]. Такое преобразование, в свою очередь, представляет собой некоторую функцию, которая строится также с помощью экспертов.

При грубом приближении в качестве этой функции можно использовать прямую (f на рис.8). Функции принадлежности на универсальной шкале изображается вертикально. Значения, расположенные на оси Х, отображаются с помощью функции f на вертикальную ось, отрицательная часть горизонтальной оси превращается в ось значений функции принадлежности. Так в примере на рис.8 функции приведено отображение функций принадлежности на универсальную шкалу. В этом случае при изменении границ универсального множества достаточно выполнить обратное преобразование для получения функций принадлежности в новых границах, не привлекая вновь к этой процедуре экспертов.

 

 

f

1 1

 

a

 

 

1 a 0 Х1

Рис.8. Функция принадлежности на универсальной шкале

Нечеткая переменная – это тройка <a, X,Ca>, где

a – наименование нечеткой переменной,

X – универсальное множество,

Ca – нечеткое множество, определенное на множестве X.

 







Дата добавления: 2015-09-04; просмотров: 565. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия