Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция принадлежности на универсальной шкале





Обычно функции принадлежности формируются на основе данных, получаемых от специалистов в моделируемой предметной области (экспертов). При этом функция принадлежности строится на предметной шкале. Если пределы универсального множества Х изменяются, придется вновь прибегать к опросу экспертов для построения функций принадлежности. Для некоторых задач можно избежать этого этапа с помощью использования универсальных шкал. Для этого используется преобразование, отображающее значения функции принадлежности на отрезок [0;1]. Такое преобразование, в свою очередь, представляет собой некоторую функцию, которая строится также с помощью экспертов.

При грубом приближении в качестве этой функции можно использовать прямую (f на рис.8). Функции принадлежности на универсальной шкале изображается вертикально. Значения, расположенные на оси Х, отображаются с помощью функции f на вертикальную ось, отрицательная часть горизонтальной оси превращается в ось значений функции принадлежности. Так в примере на рис.8 функции приведено отображение функций принадлежности на универсальную шкалу. В этом случае при изменении границ универсального множества достаточно выполнить обратное преобразование для получения функций принадлежности в новых границах, не привлекая вновь к этой процедуре экспертов.

 

 

f

1 1

 

a

 

 

1 a 0 Х1

Рис.8. Функция принадлежности на универсальной шкале

Нечеткая переменная – это тройка <a, X,Ca>, где

a – наименование нечеткой переменной,

X – универсальное множество,

Ca – нечеткое множество, определенное на множестве X.

 







Дата добавления: 2015-09-04; просмотров: 565. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия