Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нечеткие множества. Пусть Х – множество некоторых объектов х, соответствующих некоторому понятию: Х={х} называютуниверсальным множеством





Пусть Х – множество некоторых объектов х, соответствующих некоторому понятию: Х={х} называютуниверсальным множеством. Нечетким (расплывчатым) множеством А, соответствующим заданному понятию, назовем множество пар А = { < mА(х) / х>;}, где х Î Х, а mА(х) - функция принадлежности (степень принадлежности), mА(х) Î [0,1].

mА(х) - субъективная мера того, насколько элемент х множества Х соответствует понятию, формализуемому с помощью нечеткого множества А. Если множество Х представить как множество действительных чисел, получим непрерывную функцию принадлежности.

SA={x | xÎX & mА(х)>0} – носитель нечеткого множества.

 

ПРИМЕР. Имеется универсальное множество X={5,10,15,…,40}, соответствующее понятию детский возраст. Найдем нечеткое множество и построим функцию принадлежности.

А={<1/5>, <1/10>, <0,6/15>, <0,3/20>, <0/25>, <0/30>, <0/35>, <0/40>}.

Графическое представление функции принадлежности показано на рис.2.

 
 


1 mА(х)

функция

принадлежности

 

5 10 15 20 25 30 35 40 x

Рис.2. Пример построения функции принадлежности.

Если Х – непрерывно, то переходим к непрерывному варианту и получаем функцию принадлежности.

В большинстве случаев функции принадлежности строятся субъективно по результатам опроса экспертов, поэтому они являются в некотором смысле «приближенными», т.е. не абсолютно адекватно отражающими явление или объект. Собственно говоря, из субъективности следует, что абсолютной адекватности не существует в принципе. Поэтому, нужно выбирать такую функцию, с которой можно было бы как можно проще вести расчеты. Такими функциями являются трапециевидные функции (рис.3). Тогда mА(u) характеризуется четверкой ( , ). Как частный случай при имеем треугольную форму трапеции.

mА(u)

u

Рис.3. Трапециевидная функция принадлежности







Дата добавления: 2015-09-04; просмотров: 332. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия