Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие о нечетких множествах





В 1965 г. появилась статья Л. Заде «Fuzzy Sets», которая положила начало теории нечетких множеств (НМ).Основная идея Заде: человеческий способ рассуждений, опирающийся на естественные языки, не может быть описан в рамках традиционных формализмов. Программа Заде состояла в построении новой математической дисциплины, в основе которой лежала бы не классическая теория множеств (чётких множеств), а теория НМ. Тогда можно построить нечеткие аналоги всех основных математических понятий и создать необходимый формальный аппарат для моделирования человеческих рассуждений и человеческого способа решения задач.

Выделяют два основных подхода к формализации нечеткости.

1. Подход. НМ образуется путем введения обобщенного понятия принадлежности, т.е. расширения множества (0, 1) значений характеристической функции до континуума [0, 1]. Это означает, что переход от полной принадлежности объекта классу (множеству) к полной его непринадлежности происходит не скачком, а плавно, постепенно, причём принадлежность элемента множеству выражается числом из интервала [0, 1]. Таким образом, НМ можно записать в виде

, где – функция принадлежности.

Существует множество операций над НМ, часть которых аналогичны операциям над четкими множествами. Как правило, они описываются через функции принадлежности. Например,

отношение вложения;

дополнение,

произведение,

сумма.

В НМ сохраняются известные свойства операций (рефлексивность, транзитивность и т.д.) и законы (идемпотентности, коммутативности, двойного отрицания, закон де Моргана). Однако для НМ не выполняется закон комплементарности (закон исключения третьего), т.е. справедливы соотношения

.

Рассматривают следующие виды НМ:

Нормальные НМ, если .

Субнормальные НМ, если .

НМ уровня a (НМА): , т.е. НМА – четкое подмножество универсального множества Х (). Множество строгого уровня: . Носителем НМА является множество Х, для элементов которого .

Чёткое множество А *, ближайшее к НМ, определяется как

Нечеткая функция – отображение , которое каждому ставит в соответствие со степенью . При этом может быть или нечеткое Х или нечеткое Y. Нечеткая функция определяет нечёткую поверхность принадлежности в X*Y (X, Y – произвольные множества).

2. Подход. Всякое НМ можно разложить по множествам уровня (теорема декомпозиции):

, где

То есть нечеткость выражается с помощью набора иерархически упорядоченных чётких множеств. Следовательно, для конечного числа n градаций рассматриваемого свойства n –нечёткое множество задается через n –ку обычных множеств , где и .

Для бесконечного числа градаций имеем бесконечное семейство множеств , т.е. отображение вида , где любому числу (индексу) ставится в соответствие чёткое подмножество множества Х.

Тогда размытость моделируется отображением М из класса функций

со свойствами:

а) М (0)= Х; б) ;

и соответствующими операциями над ними.

Связь между первым и вторым представлениями НМ устанавливается теоремой представления, согласно которой классы F (X) (класс функций первого представления) и изоморфны относительно операций и .

 







Дата добавления: 2015-09-04; просмотров: 392. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия