Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Аналитические методы расчета





 

Суть методов сводится к следующему. Составляют систему уравнений по законам Кирхгофа. Поскольку характеристики нелинейных элементов, входящих в уравнения, не имеют точного аналитического описания, то их аппроксимируют (заменяют) известными аналитическими функциями, которые могут быть как линейными, так и нелинейными. Выбор аппроксимирующей функции зависит от конкретной решаемой задачи. В роли аппроксимирующих функций могут выступать степенные полиномы с заданным числом членов, а также логарифмические, экспоненциальные функции и др. Затем полученную систему уравнений решают аналитически. Ясно, что трудоемкость решения системы уравнений напрямую зависит от выбранных аппроксимирующих функций.

Покажем это на следующем примере.

Рассмотрим общий принцип аппроксимации степенным полиномом. Например, задана нелинейная характеристика , не имеющая точного аналитического описания, рис. 2.7.

Рис. 2.7

 

Диапазон изменения аргумента .

В качестве аппроксимирующей функции выберем степенной полином

, (2.9)

где , , - коэффициенты, которые требуется определить.

Рассмотрим аппроксимацию с разными членами полинома (2.9).

1) Линейная аппроксимация

. (2.10)

Найдем коэффициент , для этого возьмем крайнюю точку , и подставим в уравнение (2.10):

,

откуда .

Аппроксимирующая функция имеет вид , рис. 2.7, график 1.

2) Квадратичная аппроксимация

. (2.11)

Найдем из условия, что парабола должна проходить через крайнюю точку диапазона (, ):

,

откуда .

Аппроксимирующая функция показана на рис. 2.7, график 2.

3) Аппроксимация кубической параболой

. (2.12)

Найдем коэффициент из тех же условий, что в предыдущих случаях .

На рис. 2.7 функция показана под номером 3.

4) Общий случай аппроксимации степенным полиномом (2.9).

Для определения трех коэффициентов , и составим систему

из трех уравнений. На заданной характеристике возьмем три узловых точки, соответствующих , и , в которых аппроксимирующая функция (2.9) и характеристика будут точно совпадать. Обычно узловые точки выбирают на заданном диапазоне и по виду характеристики , рис. 2.7.

Например, возьмем следующие точки, исходя из вида :

1) ; ;

2) ; ;

3) ; .

Составим систему из трех уравнений (2.9) для указанных узловых точек:

;

;

;

или

;

;

.

Представим систему в стандартном виде и решим ее относительно неизвестных коэффициентов:

;

;

.

; ; ,

тогда аппроксимирующая функция примет вид

. (2.13)

На рис. 2.7 функция (2.13) не представлена, т.к. практически совпадает с исходной зависимостью .

Из рассмотренных четырех вариантов аппроксимации выбирается наиболее приемлемый, исходя из требуемых критериев точности получаемых аналитических решений. Кроме того, при выборе аппроксимирующих функций необходимо учитывать симметрию исходной характеристики.

Отметим, что кроме одной аппроксимирующей функции на рассматриваемом диапазоне изменения , можно выбирать несколько аппроксимирующих функций, справедливых на своем отрезке. В этом случае система уравнений решается столько раз на сколько отрезков разбит диапазон изменения . Полученные таким образом решения «сшиваются» на границах отрезков. Например, метод кусочно-линейной аппроксимации позволяет каждый раз решать систему линейных уравнений для выбранных отрезков изменения х.

Мы рассмотрели непосредственную аппроксимацию какой-либо характеристики нелинейного элемента, кроме того, при расчете установившихся режимов в нелинейных электрических цепях применяют аппроксимацию периодических несинусоидальных функций (переменных), зависящих от времени их эквивалентными синусоидами. При этом эквивалентность может устанавливаться по их действующим значениям или по их первым гармоникам (после разложения в ряд Фурье). Такая замена позволяет применять комплексный метод расчета для большой группы нелинейных цепей переменного тока.

 







Дата добавления: 2015-09-04; просмотров: 938. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия