Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. 1.Среднюю скорость жидкости определяют согласно условию неразрывности струи





1.Среднюю скорость жидкости определяют согласно условию неразрывности струи

Где —средняя плотность воды в заданном интервале температур 50—80°С и согласно табл. 5 учебника [1],

F-площадь поперечного сечения струи

Средняя температура жидкости при ;

Средняя температура пограничного слоя при

В качестве выбираем среднюю логарифмическую разность температур, потому что отношение температурных напоров на входе в трубку и выходе

а при >2 средняя арифметическая разность температур дает слишком приближенные значения.

Средняя (логарифмическая) разность температур при tc=const

Тогда средняя температура жидкости согласно приведенным выше формулам =40°+22°=62°С, а средняя температура пограничного слоя =40+0,5 22°=51°С.

Соответствующие значения числа Прандтля при вычисленных температурах и температуре стенки можно найти в табл. 5 учебника [1]. интерполируя значения в правой колонке таблицы: Ргж=2,9; Prm=3,4; Ргc =4,31.

3. Согласно формуле (7-35) учебника [1] число Стантона . Г де плотность р и теплоемкость Ср предстоит найти с помощью таблицы физических свойств воды по определяющей температуре, а средний коэффициент теплоотдачи — из формулы Ньютона — Рихмана:

Мощность теплового потока Qc вычисляют из уравнения теплового баланса жидкости

Q=G(h1—h2)=0,0103 (355—209,3) =1,5 кВт, где энтальпии воды на входе и на выходе определяются по четвертой колонке в табл. 5 [1].

Средняя по трубке плотность теплового потока

 

,

 

где площадь поверхности трубки F= =3,14• 0,012 1,5 м = 0,057. Тогда средний коэффициент теплоотдачи

Чтобы вычислить теперь St, надо кроме уже найденных и найти также и Cp при заданной определяющей температуре.

Согласно условию задачи в качестве определяющей следует принять сред­нюю температуру воды,

Согласно табл. 5 [1], при этой температуре =982 кг/м3 Cp=4,18 кДж/(кг К). Тогда искомая величина

Ответ:

Определяющая температура
Ее числовое значение      
Число 2,9 3,5 4,31
Число 3,14 _ _

 

 

Задача 2 (к темам 4—8). Определить мощность теплового потока, характеризующего конвективную теплоотдачу в струе жидкости, протекающей по трубе заданного диаметра длиной 3 м. Обосновать выбор расчетного уравнения, применяемого при решении задачи.

Данные, необходимые для решения этой задачи, выбрать из табл. 6.1

 

 

Таблица 6.1

 

Наименование Варианты задачи
                   
Внутренний диаметр трубы, м 0,02 0,05 0,03 0,04 0,06 0,10 0,07 0,09 0,09 0,07
Температуpa стенки трубы, °С -5         -5        
Средняя температура жидкости °С                    
Род кидкости Воз- дух Вода Вода Воз- дух Воз- дух Воз- дух Вода Воз- дух Вода Вода
Средняя скорость потока, м/с   3,9       2,25 2,8 1,9 0,55 1,2

 

 

Методические указания. Мощность теплового потока (в Вт) определяется

по формуле Ньютона — Рихмана:

Поэтому необходимо вычислить площадь поверхности стенки трубы, средний коэффициент теплоотдачи и средний температурный напор . Величину находят из безразмерного уравнения, которое предстоит выбрать.

При выборе расчетного безразмерного уравнения следует учесть значение числа Рейнольдса. Особое внимание при действиях с расчетным уравнением нужно уделять определяющей температуре, указываемой с помощью индексов при числах подобия.

В соответствии с полученным числовым значением определяющей температуры выписывают из таблицы теплофизических свойств, приведенной, например, в приложении к учебнику, нужные значения этих свойств и с их помощью вычисляют сначала значение определяющих чисел подобия, входящих в безразмерное уравнение, а затем с помощью этого уравнения и значение среднего числа Нуссельта.

По значению среднего числа Нуссельта находят средний коэффициент теплоотдачи ,

где — значение коэффициента теплопроводности, полученное из таблиц в соответствии с уже известной определяющей температурой. Средний температурный напор находят согласно указаниям, данным в пояснениях к расчетному безразмерному уравнению.

В случае затруднения с решением задачи 2 рекомендуется проанализировать решение аналогичной задачи.

Дано: длина трубы l=1м: внутренний диаметр трубы d= 0,1 м; температура стенки трубы tс=100°С; средняя логарифмическая температура жидкости tж=60 С; род жидкости — трансформаторное масло; средняя скорость течения жидкости по трубе =10 м/с.

Определить мощность теплового потока через стенку трубы Qc.

Решение.

Искомую мощность определяют по формуле Ньютона — Рихмана Qc=

Средний коэффициент теплоотдачи вычисляют по безразмерному уравнению, выбранному по ряду характеристик (А, Б, В, Г), заданных условий конвективного теплообмена. А—вид конвекции: вынужденное течение жидкости по трубам. Б —режим течения- при вынужденной конвекции определяем по числу Рейнольдса

где кинематический коэффициент вязкости находят по заданной средней температуре масла tж=60°С в табл.7. учебника [1]. Полученное значение следовательно заданный режим течения является развитым турбулентным. В – соотношение тодщин гидродинамического и теплового пограничных слоев; определяется по числу Прандтля при температурных ; ; Prж =87,8; Prc=34,9 (находятся по табл.7 Учебника [1].

Оба значения числа Прандтля>1. Г—относительная длина трубы:

Для найденных характеристик рекомендуется в [1] безразмерное уравнение (8-11) с поправочным множителем (8-14):

Где

Подставляя в это уравнение полученные выше числовые значения,находим

По значению вычисляем

где коэффициент теплопроводности находится по табл.7 [1] при .

Кроме необходимо вычислить еще F и t.

Площадь поверхности трубки, омываемой маслом,

Средний логарифмический температурный напор между стенкой и жидкостью по длине трубки 60°С

Тогда согласно приведенной выше формуле искомая мощность теплового потока через стенку трубы

Qc=0,314 .

Ответ: мощность теплового потока через стенку трубы

Задача 3 (к темам 4—2). Определить мощность тепловою потока, характеризующую конвективную теплоотдачу от поверхности объекта — трубы заданного диаметра длиной 40 м или вертикальной стенки заданной высоты при ширине 15 м. Обосновать выбор критериальной формулы, примененной для peшения. задачи. Данные, необходимые для решения своего варианта задачи, выбрать из табл. 7.1

 

Таблица 7.1

Варианты задачи
Наименование                    
Конвективный теплообмен Характеризуется условиями Свободной конвекции ВБЛИЗИ ГОРИЗОНТАЛЬНОЙ ТРУБЫ ВБЛИЗИ ВЕРТИКАЛЬНОЙ СТЕНКИ
Диаметр трубы, м 0,3 0,3   0,03 0,04 - - - - -
Высота стенки, м - - - - - 2,0 2,2 2,4 2,6 2,8
Температура на поверхности объекта (трубы,стенки)   -10   -5            
Средняя температура жидкости                    
Род жидкости вода Воз- дух вода Воз- дух вода Воз- дух Воз- дух Воз- дуз вода вода
                       

 

Методические указания. Следует иметь в виду, что в задаче рассматривается только конвективная составляющая теплоотдачи. Суммарная геплоотдача (с учетом теплового излечения) обычно больше своей конвективной составляющей, но здесь задача по определению суммарной теплоотдачи не ставится. Как и в предыдущей задаче, нужно внимательно следить за правильностью выбора определяющей температуры.

При вычислении критерия Грасгофа следует обратить внимание на особенность определения коэффициента объемного расширения

В общем случае значение этого коэффициента зависит от давления и температуры и вычисляется по следующей интерполяционной формуле:

где удельные объемы, определяемые по таблицам для данного вещества в окрестностях заданного состояния жидкости (пара, газа) с удельным объемом . Окрестные состояния 1 и 2 должны быть выбраны так, чтобы их давления были одинаковыми с заданным давлением (Р1=P=Р2), а темперятуры отличались, (t1>t>t2). В частности так определяют коэффициент объемного расширения перегретого пара. В качестве t здесь должна быть использована определяющая температура

Для насыщенного водяного пара и для воды на линии насыщения значения коэффициентов объемного расширения приводятся в справочных таблицах рекомендуемой учебной литературы.

Вода при давлениях меньше 10 МПа имеет коэффициент объемного расширения, который при данной температуре практически не зависит от давления и поэтому его можно определять по табличным значениям, приведенным для данной температуры на линии насыщения воды.

Наконец газы, а также воздух, который можно рассматривать как идеальные, характеризуюся коэффициентом объемного расширения, который определяется с помощью уравнения Клапейрона —.Менделеева (он равен величине, обратной абсолютной температуре )

 

 


Вариант 2 (К.р. №2)

Задачи

 

Задача 1 (к темам 4-8). По трубке с внутренним диаметром d = 16 мм длиной l = 2,1 м течет (горячее) жидкое масло, отдающее теплоту через стенку трубы, охлаждаемую извне. Расход масла по трубке G= 0,0091 кг/с; температура масла на входе tж.1 = 90 ° С, на выходе tж.2 = 30 ° С; температуру стенки принять постоянной по длине трубки и равной заданному значению tc.

Вычислить заданные числа подобия, приняв в качестве определяющей температуры заданное ее значение, в качестве определяющего размера принять внутренний диаметр трубки, в качестве расчетного температурного напора - среднюю (логарифмическую) разность температур между жидкостью и стенкой.

Представить график изменения температур жидкости и стенки по длине трубки, указать на графике заданные значения определяющей температуры и расчетного температурного напора.

Данные, необходимые для выбора своего варианта условиям задачи, приведены в табл. 5.2.

Таблица 5.2.

Заданные величины Варианты задачи
                   
Род масла МС-20 МК АМТ-300
Температура стен- ки, ° С                    
Число подобия Re Re Re Pe Pe Re Re Pe Pe Pe
Его определяющая температура Средняя температура жидкости Средняя температура пограничного слоя
Число подобия Nu St Nu St Nu St Nu St Nu St

 

Методические указания даны в первом варианте. Физические свойства масел приведены в приложении 3.

Задача 2 (к темам 4-8). Определить мощность теплового потока, характеризующего конвективную теплоотдачу к струе жидкости, протекающей по трубе заданного диаметра длиной 3 м. Обосновать выбор расчетного уравнения, применяемого при решении задачи.

Данные, необходимые для решения этой задачи, выбрать из табл.6.2.

 


 

Наименование Варианты задач
                   
Внутренний диаметр трубы, м 0,04 0,04 0,04 0,04 0,04 0,08 0,08 0,08 0,08 0,08
Температура стенки трубы,° С -5         -5        
Средняя температура жидкости,°С                    
Род жидкости Воздух Вода Вода Воздух Воздух Воздух Вода Воздух Вода Вода
Средняя скорость потока, м/с   3,9       2,25 2,8 1,9 0,55 1,2

 

Методические указания даны в первом варианте.

Задача 37 (к темам 4-9). Определить мощность теплового потока, характеризующую конвективную теплоотдачу от поверхности объекта - трубы заданного диаметра длиной 4,0 м или вертикальной стенки заданной высоты при ширине 10 м. Обосновать выбор безразмерного уравнения, примененного для решения задачи. Данные, необходимые для решения своего варианта задачи, выбрать из табл.7.2.

Методические указания даны в первом варианте.

Таблица 7.2.

 

Наименование Варианты задач
                   
Конвективный теплообмен харак-ся условиями свободной конвекции вблизи горизонтальной трубы вблизи вертикальной стенки
Диаметр трубы, м 0,11 0,12 0,13 0,14 0,15 - - - - -
Высота стенки, м - - - - - 1,6 1,7 1,8 1,9 2,0
Температура на поверхности объекта (трубы стенки) tc,°С   -10   -5            
Средняя температура жидкости, °С                    
Род жидкости Вода Воздух Вода Воздух Вода Воздух Воздух Воздух Вода Вода

Вариант 3 (К.р.№ 2)

 







Дата добавления: 2015-09-04; просмотров: 2044. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия