Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

НЕЧЕТКИЕ ОТНОШЕНИЯ





Пусть Е = Е1´Е2´...´Еn - прямое произведение универсальных множеств и М - некоторое множество принадлежностей (например М = [0,1]). Нечеткое n-арное отношение определяется как нечеткое подмножество R на E, принимающее свои значения в М. В случае n =2 и М = [0,1], нечетким отношением R между множествами X = Е1 и Y = Е2 будет называться функция R:(X,Y)® [0,1], которая ставит в соответствие каждой паре элементов (х,y)Î X´Y величину mR (x,y) Î[0,1]. Обозначение: нечеткое отношение на X´Y запишется в виде: xÎ X, yÎ Y: xRy. В случае, когда X = Y, т.е. X и Y совпадают, нечеткое отношение R: X´X®[0,1] называется нечетким отношением на множестве X.

Примеры:

1. Пусть X = {x1,x2,x3}, Y = {y1,y2,y3,y4}, М = [0,1]. Нечеткое отношение R=XRY может быть задано, к примеру, таблицей:

  y1 y2 y3 y4
x1     0,1 0,3
x2   0,8   0,7
x3   0,5 0,6  

2.

3. Пусть X = Y = (- , ), т.е. множество всех действительных чисел. Отношение x>>y (x много больше y) можно задаеть функцией принадлежности:

4. Отношение R, для которого mR (x,y) = e -k(x-y)2, при достаточно больших k можно интерпретировать так: "x и y близкие друг к другу числа".
В случае конечных или счетных универсальных множеств очевидна интерпретация нечеткого отношения в виде нечеткого графа, в котором пара вершин (xi,xj) в случае XRX соединяется ребром с весом mR (xi,xj), в случае XRY пара вершин (xi,yj) соединяется ребром c весом mR (xi,yj).

Примеры:

1. Пусть Х={x1,x2,x3}, и задано нечеткое отношение R: X´X® [0,1], представимое графом:

 

2. Пусть X={x1,x2} и Y={y1,y2,y3}, тогда нечеткий граф вида:


задает нечеткое отношение XRY.

Замечание. В общем случае нечеткий граф может быть определен на некотором G Ì X ´ Y, где G - множество упорядоченных пар (x,y) (необязательно всех возможных) такое, что G Ç = Æ и G È = X ´ Y.

Будем использовать обозначения вместо и вместо .

Пусть R: X ´ Y ®[0,1].







Дата добавления: 2015-09-04; просмотров: 471. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия