Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Правила преобразований нечетких высказываний





Правило преобразования конъюнктивной формы

Справедливо выражение:
<a есть a' и b есть b'>Þ<(a, b) есть (a'Çb')>.
Здесь Þ - знак подстановки, a'Çb' - значение лингвистической переменной (a, b), соответствующее исходному высказыванию <a есть a' и b есть b'>, которому на X´Y ставится в соответствие нечеткое множество Ç c функцией принадлежности

(x,y) = (x,y)L (x,y) = mA(x)LmB(y).

Правило преобразования дизъюнктивной формы

Справедливо выражение:
<a есть a' или b есть b'>Þ<(a,b) есть (a'Èb')>, где значению (a'Èb') лингвистической переменной (a, b) соответствует нечеткое множество È , с функцией принадлежности

(x,y) = (x,y)V (x,y) = mA(x)VmB(y).

Замечание 1. Правила справедливы также для переменных вида <a, T1, X, G1,M1> и <a, T2, Y, G2, M2>, когда в форме значений лингвистических переменных формализованы невзаимодействующие характеристики одного и того же объекта. Например, для построения нечеткого множества высказывания < ночь теплая и очень темная > нужно использовать правило конъюнктивной формы, а для высказывания <ночь теплая или очень темная > - правило дизъюнктивной формы.

Замечание 2. Если задана совокупность лингвистических переменных {<a i, T i, X i, G i, M i >}, i = 1, 2,.., n, то любое составное высказывание, полученное из высказываний <a есть a'> с использованием модификаторов " очень ", " не ", " более или менее " и др. и связок " и ", " или ", можно привести к виду <a есть a'>, где a - составная лингвистическая переменная (a1,a2,..,a n), a' - ее значение, определяемое (как и функция принадлежности) в соответствии с вышеуказанными правилами.

Правило преобразования высказываний импликативной формы

Справедливо выражение:
<если a есть a', то b есть b'>Þ <(a, b) есть (a'®b')>, где значению (a'®b') лингвистической переменной (a, b) соответствует нечеткое отношение XRY на X´Y.
Функция принадлежности mR(x,y) зависит от выбранного способа задания нечеткой импликации.

Способы определения нечеткой импликации

Будем считать, что заданы универсальные множества X и Y, содержащие конечное число элементов. Под способом определения нечеткой импликации " если А, то В" (где А и В нечеткие множества на X и Y соответственно) будем понимать способ задания нечеткого отношения R на X´Y, соответствующего данному высказыванию.
С целью обоснованного выбора определения нечеткой импликации, японскими математиками Мидзумото, Танака и Фуками было проведено исследование всех известных по литературе определений (плюс предложенные авторами). Рассмотренные определения задавали следующие нечеткие отношения для высказывания "если А, то В":

1. Rm = (A´B)È( ´Y)
mRm(x,y) = (mA(x)L mB(y)) V (1 - mA(x));

2. Ra = ( ´Y)Å(X´B)
mRa(x,y) = 1 L (1-mA(x) + mB(y));

3. Rc = A´B
mRc(x,y) = mA(x)L mB(y);

4. Rs = A´Y X´B
mRs(x,y) = ;

5. Rg = A´Y X´B
mRg(x,y) = ;

6. Rsg = (A´Y X´B) Ç ()
;

7. Rgg = (A´Y X´B) Ç ()
;

8. Rgs = (A´Y X´B) Ç ()
;

9. Rss = (A´Y X´B) Ç ()
;

10. Rb = ( ´Y)È(X´B)
mRb(x,y) = (1-mA(x)) Ú mB(y);

11. Rà = A´Y X´B
;

12. R· = A´Y X´B

13. R* = A´Y X´B
mR*(x,y) = 1 - mA(x)+ mA(x)× mB(y);

14. R# = A´Y X´B
mR#(x,y)=(mA(x)Ù mB(y))Ú ((1 - mA(x)) Ù(1 - mB(y)) Ú(mB(y) Ù(1 - mA (x));

15. RÑ = A´Y X´B

Правилом вывода являлось композиционное правило вывода с использованием (max-min)-композиции.
В качестве значений на входе системы рассматривались:
A' = A;
A' = "очень А"= А2, mA0,5(x) = mA(x)2;
A' = "более или менее А" = А0,5 mA0,5(x)= mA(x)0,5;
A' = mA(x)0,5, (x) = 1 - mA (x).
Приведем таблицу итогов исследования. В ней символ "0" означает выполнение соответствующей схемы вход-выход, символ "x" - невыполнение. Следствие "неизвестно" (Н) соответствует утверждению: "если x=A, то нельзя получить никакой информации об y".
В данной таблице первая графа -"Посылка", вторая -"Следствие".

    Rm Ra Rc Rs Rg Rsg Rgg Rgs Rss Rb R* R#
A B x x               x x x x x x
A2 B2 x x x   x   x x   x x x x x x
A2 B x x   x   x     x x x x x x x
A0,5 B0,5 x x x             x x x x x x
A0,5 B x x   x x x x x x x x x x x x
Н     x     x x x x         x x
A B x x x x x         x x x x x x

Кроме ответа о выполнении соответствующей схемы (0 или х),авторами исследованы явные выражения для функций принадлежности следствий по каждому из вариантов определения нечеткой импликации, на основе чего ими был сформулирован вывод:

- Rm и Ra не могут быть использованы;
- Rc может использоваться частично; - Rs, Rg, Rsg, Rgg, Rgs, Rss рекомендованы к использованию;
- Rb, Rà, R·, R*, R#, RÑ не рекомендованы к использованию.

 







Дата добавления: 2015-09-04; просмотров: 686. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия