Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Спектры периодических сигналов





Известно, что любую функцию s(t), кусочно-непрерывную на интервале а£ t £b и ограниченную по норме , можно разложить в ряд, называемый обобщенным рядом Фурье по полному набору (базису) ортогональных функций

. (2.1)

Функции называются ортогональными, если выполняется соотношение:

при m ¹ к; - норма.

Для комплексных функций Y к(t), Yк*(t) есть комплексносопряженная ей функция.

Коэффициенты ряда определяются умножением поочередно (2.1) на и интегрированием по периоду, при этом из-за ортогональности функций справа остается только один член:

(2.2)

Обобщенный ряд Фурье при заданной системе функций и при фиксированном числе слагаемых ряда обеспечивает минимум среднеквадратичной ошибки разложения:

При этом говорят о среднеквадратичной, энергетической сходимости ряда к функции s(t).

Для представления периодических сигналов s(t+T) = s(t) с периодом T = b-a вне интервала a £ t £ b базисные функции Y к(t) также должны быть периодическими с периодом к - целое число.

В радиотехнике в качестве базисных функций разложения Фурье используют преимущественно тригонометрические функции. Это объясняется следующими причинами:

а) функции cos wt, sin wt являются простыми, определены при всех значениях t, являются ортогональными и составляют полный набор при кратном уменьшении периода;

б) гармоническое колебание является единственной функцией времени, сохраняющей свою форму при прохождении колебания через линейную систему с постоянными параметрами, можут изменяться лишь амплитуда и фаза;

в) для гармонических функций и их комплексного анализа имеется мощный математический аппарат, найдены спектры множества форм сигналов;

г) гармоническое колебание легко осуществить на практике.

Кроме гармонического ряда Фурье применяются и другие типы разложения: по функциям Уолша, Бесселя, Хаара, полиномам Чебышева, Ляггера, Лежандра и др.

Гармонический ряд Фурье может быть представлен в следующих видах:

(2.3)

где

An - амплитуда гармоник, nw1 - частота гармоник, jn - фаза гармоник, - комплексная амплитуда гармоник. Все виды разложения (2.3) тождественны и переходят один в другой.

При выбранном знаке перед jn фаза гармоник является аргументом комплексной амплитуды.

Спектр периодического сигнала является дискретным и представляет набор гармонических колебаний, в сумме составляющий исходный сигнал. Одним из преимуществ разложения сигнала в спектр является следующее. Сигнал, проходя по цепи, претерпевает изменения (усиление, задержка, детектирование, изменение фазы, ограничение и т. д.). Токи и напряжения в цепи под действием сигнала описываются дифференциальными уравнениями, соответствующими элементам цепи и способу их соединения. Линейные цепи описываются линейными дифференциальными уравнениями, причем для линейных цепей верен принцип суперпозиции, согласно которому действие на систему сложного сигнала, состоящего из суммы простых сигналов, равно сумме действий от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на какой-либо простой сигнал, например, на синусоидальное колебание с определенной частотой, определить реакцию системы на любой сложный сигнал, разложив его в ряд по синусоидальным колебаниям.







Дата добавления: 2015-09-04; просмотров: 493. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия