Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Эволюция расширения





Ход расширения в общем случае зависит от значений космологической постоянной Λ, кривизны пространства k и уравнения состояния (P(ρ)). Однако качественно эволюцию расширения можно оценить, опираясь на достаточно общие предположения.

 

Состав Вселенной по данным WMAP

В современной общепринятой модели расширения космологическая постоянная положительна и существенно отлична от нуля, то есть на больших масштабах возникают силы антигравитации. Природа таких сил неизвестна, теоретически подобный эффект можно было бы объяснить действием физического вакуума, однако ожидаемая плотность энергии оказывается на много порядков больше, чем энергия, соответствующая наблюдаемому значению космологической постоянной — проблема космологической постоянной.

Остальные варианты на данный момент представляют только теоретический интерес, однако это может измениться при появлении новых экспериментальных данных. Современная история космологии уже знает подобные примеры: модели с нулевой космологической постоянной безоговорочно доминировали (помимо короткого всплеска интереса к другим моделям в 1960-е гг.) с момента открытия Хабблом космологического красного смещения и до 1998 года, когда данные по сверхновым типа Ia убедительно опровергли их.

На сегодняшний момент в стандартной модели считается, что k=0 (это проверяется с точностью до нескольких десятых долей процента), тогда плотность тёмной энергии составляет 72 % от всей энергии Вселенной, а основной вклад в плотность материи вносит невидимое вещество, участвующее только в гравитационном взаимодействии (тёмная материя) — её почти в 6 раз больше, чем барионной материи. Эти значения основаны на наблюдениях сверхновых типа Ia, исследованиях флуктуаций реликтового излучения, корреляционных функциях и спектрах пространственного распределения галактик, данных о гравитационном линзировании скоплениями галактик.

Lt; 0

Если значение космологической постоянной отрицательно, то действуют только силы притяжения и более никаких. Правая часть уравнения энергии будет неотрицательной только при конечных значениях R. Это означает, что при некотором значении Rc Вселенная начнет сжиматься при любом значении k и вне зависимости от вида уравнения состояния.

Λ = 0

В случае, если космологическая постоянная равна нулю, то эволюция при заданном значении H0 целиком и полностью зависит от начальной плотности вещества[68]:

 

 

Значение называют критической плотностью. Если , то расширение продолжается бесконечно долго, в пределе с асимптотически стремящейся к нулю скоростью. Если плотность больше критической, то расширение Вселенной тормозится и сменяется сжатием. Если меньше, то расширение идёт неограниченно долго с ненулевым пределом H.

Если уравнение энергии поделить на H0, то оно примет следующий вид (с учётом нулевой космологической постоянной):

Из этого уравнения следует, что плотность вещества во Вселенной и кривизна пространства взаимосвязаны: ρ=ρcr соответствует k=0 (случай плоской Вселенной), плотность меньше критической соответствует k=-1 (открытая Вселенная), больше — k=1 (замкнутой Вселенной).

Gt; 0

Если Λ>0 и k≤0, то Вселенная монотонно расширяется, но в отличие от случая с Λ=0 при больших значениях R скорость расширения растёт[69]:

При k=1 выделенным значением является . В этом случае существует такое значение R, при котором и , то есть Вселенная статична.

При Λ>Λc скорость расширения убывает до какого-то момента, а потом начинает неограниченно возрастать. Если Λ незначительно превышает Λc, то на протяжении некоторого времени скорость расширения остаётся практически неизменной.

В случае Λ<Λc всё зависит от начального значения R, с которого началось расширения. В зависимости от этого значения Вселенная либо будет расширяться до какого-то размера, а потом сожмется, либо будет неограниченно расширяться.

Теория Большого Взрыва (модель горячей Вселенной)

Эта теория отвечает на вопросы: «Существовала ли Вселенная вечно или она появилась из чего-то? А если была рождена, то как она развивалась в первые секунды своей жизни?» Экстраполяция наблюдаемого состояния Вселенной назад во времени при условии верности общей теории относительности приводит к неизбежному выводу, что за конечное время назад всё пространство Вселенной сворачивается в точку — космологическую сингулярность, называемую Большим Взрывом.

Такое поведение, по-видимому, свидетельствует о неприложимости общей теории относительности к самым ранним моментам расширения Вселенной, что приводит к многочисленным, но пока, увы, только чисто умозрительным попыткам разработать более общую теорию (или даже «новую физику»), решающую эту проблему космологической сингулярности.

В момент, достаточно близкий ко Взрыву, но уже уверенно описываемый современной физикой, вся энергия и вещество Метагалактики содержались в маленьком объёме, а так как энтропия Вселенной велика, то, значит, и температура была очень высокой (в отличие от исторически конкурировавшей с этой теории холодной Вселенной, где температура на протяжении всей эволюции была близка к современному значению). Именно благодаря высокой температуре и плотности элементарные частицы образовывали «суп», в котором преобладали самые простые частицы, которые при дальнейшем увеличении размера Вселенной и её остывании начали складываться сначала в частицы посложнее, а потом дело дошло и до обычных протонов, нейтронов и так далее.

По ходу дела оставляя без ответа вопросы: «Почему античастиц оказалось меньше чем частиц?» и «Почему энтропия Вселенной такая высокая?» (они составляют аспекты так называемой проблемы начальных значений) — и вводя руками условие доминирования частиц над античастицами и наблюдаемое значение энтропии, можно построить теорию о первичном нуклеосинтезе, которая в целом неплохо согласуется с наблюдательными данными.

Также довольно хорошо объясняется и реликтовое излучение — это наследие того момента, когда ещё всё вещество было ионизованным и не могло сопротивляться давлению света. Иными словами, реликтовый фон — это остаток «фотосферы Вселенной».







Дата добавления: 2015-09-04; просмотров: 412. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия