Метод Хаусхолдера для симметричных матриц
Метод Хаусхолдера позволяет привести матрицу к трехдиагональному виду, выполнив почти вдвое меньше вычислений по сравнению с другими методами. Это обусловлено тем, что при его применении становятся нулевыми сразу все элементы строк и столбцов, стоящие вне трех диагоналей матрицы. Метод Хаусхолдера позволяет получить требуемый результат быстрее, чем метод Гивенса, так как связан с выполнением меньшего числа, хотя и более сложных преобразований. Это его свойство особенно ярко проявляется применительно к большим матрицам. Хотя в методе Хаусхолдера вместо плоских вращении используются эрмитовы ортогональные преобразования матриц, трехдиагональная форма матрицы, которую получают этим методом, имеет те же собственные значения, что и трехдиагональная матрица, получаемая методом Гивенса. При использовании метода Хаусхолдера на п — 2 основных шагах выполняются следующие преобразования: Аk = РkAk-1Рk, k=1, 2,..., п-2, где Aо == А.
Каждая преобразующая матрица имеет вид uk ukT Pk = E - --------------, 2Kk2 где ui,k = 0 при i = 1, 2, …, k, ui,k = ak,i при i = k+2, …, n, uk+1,k = ak,k+1 ± Sk.
Здесь n 1/2 Sk = S a2k,i i=k+1
2K2k = S2k ± ak, k+1 Sk. В этих уравнениях берется знак, соответствующий элементу a k,k+1. Это позволяет сделать значение иk+1,k максимальным. Отметим, что методами Гивенса и Хаусхолдера можно пользоваться и в случае несимметричных матриц, приводя их, правда, не к трехдиагональному, а другому частному виду треугольной матрицы известной как матрица Гессенберга:
|