Критерий Гурвица. Maxi(eir) = { C⋅minj(eij) + (1-C)⋅maxj(eij) },
Стараясь занять наиболее уравновешенную позицию, Гурвиц предположил оценочную функцию, которая находится где-то между точкой зрения крайнего оптимизма и крайнего пессимизма: maxi(eir) = { C⋅minj(eij) + (1-C)⋅maxj(eij) }, где С — весовой множитель. Правило выбора согласно критерию Гурвица, формируется следующим образом: матрица решений ||eij|| дополняется столбцом, содержащим среднее взвешенное наименьшего и наибольшего результатов для каждой строки. Выбираются только те варианты, в строках которых стоят наибольшие элементыe eirэтого столбца. При С=1 критерий Гурвица превращается в ММ-критерий. При С = 0 он превращается в критерий «азартного игрока» maxi(eir) = maxi(maxj(eij)), т.е. мы становимся на точку зрения азартного игрока, делающего ставку на то, что «выпадет» наивыгоднейший случай. В технических приложениях сложно выбрать весовой множитель С, т.к. трудно найти количественную характеристику для тех долей оптимизма и пессимизма, которые присутствуют при принятии решения. Поэтому чаще всего С:=1/2. Критерий Гурвица применяется в случае, когда:
2. Критерий Ходжа–Лемана. Этот критерий опирается одновременно на ММ-критерий и критерий Баеса-Лапласа. С помощью параметра n выражается степень доверия к используемому распределений вероятностей. Если доверие велико, то доминирует критерий Баеса-Лапласа, в противном случае — ММ-критерий, т.е. мы ищем maxi(eir) = maxi{v⋅∑eij⋅qi + (1-v) minj(eir)}, 0 ≤ n ≤ 1. Правило выбора, соответствующее критерию Ходжа-Лемана формируется следующим образом: матрица решений ||eij|| дополняется столбцом, составленным из средних взвешенных (с весом v≡const) математическое ожиданиями и наименьшего результата каждой строки (*). Отбираются те варианты решений в строках которого стоит набольшее значение этого столбца. При v = 1 критерий Ходжа-Лемана переходит в критерий Байеса-Лапласа, а при v = 0 становится минимаксным. Выбор v субъективен т. к. Степень достоверности какой-либо функции распределения — дело темное. Для применения критерия Ходжа-Лемана желательно, чтобы ситуация в которой принимается решение, удовлетворяла свойствам:
|