Критерий Гермейера.
Этот критерий ориентирован на величину потерь, т.е. на отрицательные значения всех eij. При этом maxi(eir) = maxi(minj(eij)qj). Т.к. в хозяйственных задачах преимущественно имеют дело с ценами и затратами, условиеe eij<0 обычно выполняется. В случае же, когда среди величин eij встречаются и положительные значения, можно перейти к строго отрицательным значениям с помощью преобразования eij-a при подходящем образом подобранном a>0. При этом оптимальный вариант решения зависит от а. Правило выбора согласно критерию Гермейера формулируется следующим образом: матрица решений ||eij|| дополняется еще одним столбцом содержащим в каждой строке наименьшее произведение имеющегося в ней результата на вероятность соответствующего состояния Fj. Выбираются те варианты в строках которых находится наибольшее значениеe eij этого столбца. В каком-то смысле критерий Гермейера обобщает ММ-критерий: в случае равномерного распределения qj = 1/n, j={1,n}, они становятся идентичными. Условия его применимости таковы:
Если функция распределения известна не очень надежно, а числа реализации малы, то, следуя критерию Гермейера, получают, вообще говоря, неоправданно большой риск.
|