Объединенный критерий Байеса-Лапласа и минимакса.
Стремление получить критерии, которые бы лучше приспосабливались к имеющейся ситуации, чем все до сих пор рассмотренные, привело к построению так называемых составных критериев. В качестве примера рассмотрим критерий, полученный путем объединения критериев Байеса-Лапласа и минимакса (BL(MM)-критерий). Правило выбора для этого критерия формулируется следующим образом: матрица решений ||eij|| дополняется еще тремя столбцами. В первом из них записываются математические ожидания каждой из строк, во втором — разность между опорным значением ei0j0 = maxi(maxj(eij)) и наименьшим значением minj(eij) соответствующей строки. В третьем столбце помещаются разности между наибольшим значением maxj(eij) каждой строки и наибольшим значением maxj(ei0j) той строки, в которой находится значение ei0j0. Выбираются те варианты, строки которых (при соблюдении приводимых ниже соотношений между элементами второго и третьего столбцов) дают наибольшее математическое ожидание. А именно, соответствующее значение ei0j0 - maxj(eij) из второго столбца должно быть или равно некоторому заранее заданному уровню риска Eдоп. Значение же из третьего столбца должно быть больше значения из второго столбца. Применение этого критерия обусловлено следующими признаками ситуации, в которой принимается решение:
BL(MM)-критерий хорошо приспособлен для построения практических решений прежде всего в области техники и может считаться достаточно надежным. Однако заданные границы риска Eдоп и, соответственно, оценок риска Ei не учитывает ни число применения решения, ни иную подобную информацию. Влияние субъективного фактора хотя и ослаблено, но не исключено полностью. Условие maxj(eij)-maxj(ei0j)≥Ei существенно в тех случаях, когда решение реализуется только один или малое число раз. В этих условиях недостаточно ориентироваться на риск, связанный только с невыгодными внешними состояниями и средними значениями. Из-за этого, правда, можно понести некоторые потери в удачных внешних состояниях. При большом числе реализаций это условие перестает быть таким уж важным. Оно даже допускает разумные альтернативы. При этом не известно, однако, четких количественных указаний, в каких случаях это условие следовало бы опускать.
|