Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет неразрезной балки методом сил. Уравнение трех моментов





Неразрезной балкой называется статически неопределимая балка, опирающаяся в пролете на конечное число шар­нирных опор. Крайние сечения неразрезной балки могут быть сво­бодны, заделаны или шарнирно оперты. Одна из опор неразрезной балки имеет связь, препятствующую смещению балки вдоль ее оси.

Расчет неразрезной балки (рис. 24, а) можно выполнить, как и любой статически неопределимой системы методом сил. Основ­ную систему для расчета неразрезной балки получим, удалив из нее связи, препятствующие взаимному повороту смежных сечений бал­ки над ее опорами, т.е. поместив шарниры в опорных сечениях балки (рис. 24, б).

Рис. 24

 

Неизвестными являются изгибающие моменты, возникающие в сечении неразрезной балки над опорами.

Выделим из основной системы четыре примыкающих друг к другу пролета со средней опорой номером n и построим единичные и грузовые эпюры (рис. 25). Из анализа единичных эпюр видно, что в любом каноническом уравнении только три единичных коэф­фициента будут отличны от нуля. Напишем одно из канонических уравнений в общем виде:

. (14.22)

Подсчитаем единичные и грузовые коэффициенты, применяя правило Верещагина «перемножения» эпюр:

(14.23)

Подставим найденные коэффициенты в (14.22), получим:

(14.24)

В случае балки постоянного сечения J 1 = J 2 =...= Jn = Jn +1 и введя обозначения Xn -1 = M n -1; Xn = Mn; Xn +1 = Mn+ 1, получим:

. (14.25)

Это и есть уравнение трех моментов для неразрезной балки постоянного сечения. В этом урав­нении неизвестными являются из­гибающие моменты на опорах. Если у неразрезной балки все опоры шар­нирные, то таких уравнений можно составить столько, сколько у балки промежуточных опор.

При наличии на концах балки нагруженных консолей, изгибающие моменты на крайних опорах войдут в уравнение трех моментов, как из­вестные величины, а при отсутствии консолей эти моменты будут равны 0.

Если конец неразрезной балки защемлен, то для применения уравнения (14.25) необходимо, отбросив заделку, ввести с ее сто­роны дополнительный пролет =0 (рис.25). Такая системабудет деформироваться также, как балка с жесткой заделкой.

Рис. 25

 

Решая совместно, составленные таким образом уравнения, най­дем все неизвестные изгибающие моменты на опорах. Далее для построения эпюр M и Q, каждый пролет неразрезной балки рас­сматриваем как балку на двух шарнирных опорах, загруженных внешней нагрузкой и двумя опорными моментами. Ординаты эпюр могут быть подсчитаны по формулам:

, (14.26)

где и - ординаты эпюр М и Q от внешней нагрузки в основной системе.

Чтобы убедиться в правильности построения эпюр М и Q необ­ходимо провести проверку равновесия неразрезной балки по уравнениям: ; .

Для этого следует определить вертикальные опорные реакции неразрезной балки, используя эпюру Q:

. (14.27)

 

 







Дата добавления: 2015-09-04; просмотров: 2508. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия