Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Использование свойств симметрии при раскрытии статической неопределимости





Использование метода сил для расчета систем с высокой степенью статической неопределимости связано с решением совместной системы большого количества линейных уравнений. Даже самый экономичных метод решения таких систем – алгоритм Гаусса – требует вычислительных операций (где n – число уравнений, т.е. степень статической неопределимости системы), при условии, что все коэффициенты системы отличны от нуля. В связи с этим нужно стремиться так выбрать основную систему, чтобы возможно большее число побочных единичных перемещений , и свободных членов обратилось в ноль.

Основным средством для достижения этой цели является использование симметрии. Стержневая система является симметричной, если симметричны не только оси и опорные закрепления (геометрическая симметрия), но и жесткости (упругая симметрия). При этом внешняя нагрузка может быть и несимметричной.

При выборе основной системы лишние неизвестные следует выбирать в виде симметричных и обратно симметричных усилий. Симметричные неизвестные создают симметричные эпюры моментов, а обратно симметричные неизвестные – кососимметричные эпюры. Такие эпюры обладают свойством взаимной ортогональности, т.е. результат их перемножения равен нулю:

(14.18)

Ортогонализация эпюр может достигаться различными способами:

1) выбор симметричной основной системы; 2) выбор симметричных и обратносимметричных неизвестных; 3) группировка неизвестных; 4) устройство жестких консолей (способ упругого центра); 5) использование статически неопределимой основной системы; 6) разложение произвольной нагрузки на симметричную и обратносимметричную составляющие.

Рассмотрим раму, имеющую ось геометрической симметрии (рис.19, а). Заменим внешнюю нагрузку ей статически эквивалентной, такой, что она представляет сумму симметричной (рис.19, б) и кососимметричной (рис.19, в) нагрузок относительно оси геометрической симметрии.

а) б) в)

Рис. 19

 

Аналогично можно классифицировать внутренние силовые факторы в произвольном сечении стержневой системы (рис.20).

Изгибающие моменты М Х, М У, нормальная сила N являются зеркальным отражением друг друга относительно плоскости поперечного сечения. Эти внутренние силовые факторы назовём симметричными. Остальные (перерезывающие силы Q x, Q y и крутящий момент М z) назовём антисимметричными или кососимметричными силовыми факторами.

Рис. 20

Докажем теперь положение:

у геометрически симметричной рамы в плоскости симметрии при симметричной внешней нагрузке обращаются в нуль кососимметричные внутренние силовые факторы, а при кососимметричной внешней нагрузке – симметричные силовые факторы (рис.21).

Канонические уравнения метода сил для изображённой на рис.19 трижды статически неопределимой рамы имеют вид

(14.19)

а) б)

Рис. 21

 

На рис. 22 приведены эпюры изгибающих моментов от единичных сил.

На основании этих эпюр находим:

а) б) в)

Рис. 22

 

Следовательно, канонические уравнения (14.19) принимают вид

(14.20)

На рис. 23 приведены эпюры моментов от внешних симметричной (рис.23, а) и кососимметричной (рис.23, б) нагрузок.

В первом случае симметричной внешней нагрузки имеем:

а) б)

Рис. 23

 

Из (14.20) следует Х 2 = 0, т.е. при симметричной внешней нагрузке обращается в нуль кососимметричный силовой фактор (перерезывающая сила), что и требовалось доказать.

Во втором случае кососимметричной внешней нагрузки имеем:

Канонические уравнения (14.20) принимают вид

(14.21)

Т.к. определитель системы двух первых уравнений (14.21)

то , что и требовалось доказать.

Полученные результаты могут быть распространены на пространственные стержневые системы.

 

 







Дата добавления: 2015-09-04; просмотров: 1837. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия