Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие спрямляемой дуги.





В школьном курсе математики рассматривался вопрос о вычислении длин отрезков прямой, длины окружности, а также различных её частей. В приложениях математики возникает потребность в вычислении длин дуг произвольных кривых. Но, чтобы вычислить длину произвольной кривой, надо быть уверенным в том, что рассматриваемая кривая имеет конечную длину.

В средней школе длиной окружности называют предел последовательности периметров вписанных в окружность правильных многоугольников (при неограниченном удвоении числа сторон). Однако это определение неприменимо к произвольным кривым.

Дадим общее определение понятия длины кривой. Пусть задана жорданова кривая Г1:

(1)

a t в.

Напомним, что функции и непрерывны на отрезке. Разобьём отрезок [ а;в ] на части числами

t0, t1,…, tn: a = t0 < t1 < … < tn = в.

Каждому числу t соответствует точка Мк (, ) кривой Г. Проводя отрезки М0М1, …, Mn-1Mn, получим ломаную линию ɣ, вписанную в кривую Г. Обозначим её длину через l (ɣ).

Определение. Жорданова кривая (1) называется спрямляемой (имеющей длину), если множество длин вписанных в эту кривую ломаных γ ограничено сверху. Точная верхняя граница множества называется длиной кривой Γ и обозначается :

. (2)

Докажем, что длина спрямляемой кривой обладает свойством аддитивности.

Пусть жорданова кривая Γ разбита на кривые и . Если эти кривые спрямляемы, то кривая Γ спрямляема, причем .

В самом деле, пусть γ – любая ломаная, вписанная в кривую Γ, и пусть М – точка, разбивающая Γ на и . Добавляя эту точку к вершинам ломаной γ, получим ломаную , длина которой не меньше длины ломаной γ, . Но ломаная состоит из двух частей и , вписанных соответственно в кривые и , причем и .

Поэтому

.

Это неравенство показывает, что число является одной из верхних границ для множества длин ломаных, вписанных в кривую Γ. Но для любого найдутся ломаные и , вписанные в и , такие, что

и .

Объединяя и , получаем ломаную γ, вписанную в Γ и такую, что

.

А это и значит, что - точная верхняя граница множества , т.е.

.







Дата добавления: 2015-09-04; просмотров: 535. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия