Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

МОДЕЛИ. ЭЛЕМЕНТЫ МОДЕЛЕЙ





 

При формировании 3D модели используются:

Ø двумерные элементы (точки, прямые, отрезки прямых, окружности и их дуги, различные плоские кривые и контуры);

Ø поверхности (плоскости, поверхности, представленные семейством образующих, поверхности вращения, криволинейные поверхности);

Ø объемные элементы (параллелепипеды, призмы, пирамиды, конусы, произвольные многогранники и т.п.).

Из этих элементов с помощью различных операций формируется внутреннее представление модели.

Методы построения моделей

Используются два основных способа формирования геометрических элементов моделей - это построение по заданным отношениям (ограничениям) и построение с использованием преобразований.

Построение с использованием отношений

Построение с использованием отношений заключается в том, что задаются:

Ø элемент, подлежащий построению;

Ø список отношений и элементы, к которым относятся отношения.

Например, построение прямой, проходящей через точку пересечения двух других прямых и касательную к окружности.

Используется два способа реализации построения по отношениям - общий и частный.

При общем способе реализации построение по заданным отношениям можно представить в виде двухшаговой процедуры:

Ø на основе заданных типов отношений, элементов и параметров строится система алгебраических уравнений;

Ø решается построенная система уравнений.

Очевидное достоинство такого способа - простота расширения системы - для введения нового отношения достаточно просто написать соответствующие уравнения.

Основные проблемы такого способа заключаются в следующем:

Ø построенная система уравнений может иметь несколько решений, поэтому требуется выбрать одно из них, например в диалоговом режиме;

Ø система уравнений может оказаться нелинейной, решаемой приближенными методами, что может потребовать диалога для выбора метода(ов) приближенного решения.

В связи с отмеченными проблемами общий подход реализован только в наиболее современных системах и при достаточно высоком уровне разработчиков в области вычислительной математики.

Большинство же систем реализует частный подход, первым приходящий в голову и заключающийся в том, что для каждой триады, включающей строящийся элемент, тип отношения и иные элементы, затрагиваемые отношением, пишется отдельная подпрограмма (например построение прямой, касательной к окружности в заданной точке). Требуемое построение осуществляется выбором из меню и тем или иным вводом требуемых данных.

Преимущества такого подхода ясны - проще писать систему. Не менее очевидны и недостатки, когда пользователю требуется использовать сильно разветвленные меню и/или запоминать мало вразумительные сокращения или пиктограммы, так как обычно число требуемых вариантов построения исчисляется сотнями. Расширение системы, реализуемое добавлением новой подпрограммы, требует ее перепроектирования, по крайней мере, в части обеспечения доступа пользователя к новым возможностям. В некотором смысле предельный пример этого подхода - система AutoCAD фирмы Autodesk. Авторы даже гордятся сложностью системы: "AutoCAD предоставляет эту крайне сложную технологию".

Понятно, что перспективы за общим подходом с разумным использованием частных решений. Вместе с тем устаревшие системы типа AutoCad скорее всего также будут продолжать использоваться в силу распространенности, сложившегося круга обученных пользователей и т.п.

Построение с использованием преобразований

Построение нового объекта с использованием преобразований заключается в следующем:

Ø задается преобразуемый объект;

Ø задается преобразование (это может быть обычное аффинное преобразование, определяемое матрицей, или некоторое деформирующее преобразование, например замена одного отрезка контура ломаной);

Ø выполнение преобразования; в случае аффинного преобразования для векторов всех характерных точек преобразуемого объекта выполняется умножение на матрицу; для углов вначале переходят к точкам и затем выполняют преобразование.

 







Дата добавления: 2015-09-04; просмотров: 517. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия