Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегральная теорема Лапласа





Вновь предположим, что производится п испы­таний, в каждом1 из которых вероятность появления события А постоянна и равна р (0 < р < 1). Как вычис­лить вероятность Pn(kи Л2) того, что событие А появится в п испытаниях не менее kt и не более kt раз (для крат­кости будем говорить «от до ka раз»)? На этот вопрос отвечает интегральная теорема Лапласа, которую мы приводим ниже, опустив доказательство.

Теорема. Если вероятность р наступления события А в каждом испытании постоянна и отлична от нуля и единицы, то вероятность Рп (kx, kt) того, что событие А появится в п испытаниях от kl до /г2 раз, приближенно равна определенному интегралу

ж";

Pn(klt fc,)~-pL=-jV*v»dz, (*)

X'

где *'=(£*—np)lVnpq и xf = (kt—np)/Vnpq.

При решении задач, требующих применения интеграль­ной теоремы Лапласа, пользуются специальными табли­цами, так как неопределенный интеграл §e~zt/,dz не выражается через элементарные функции. Таблица для

X

интеграла Ф (дс) =-р==- J®-**7* пРивеДена в конце книги

(см. приложение 2). В таблице даны значения функции Ф(х) для положительных значений х и для х — 0; для * < 0 пользуются той же таблицей [функция Ф (х) не­ четна, т. е. Ф (— х) — — Ф (*)]. В таблице приведены значения интеграла лишь до х — Ъ, так как для х > 5 можно принять Ф (х) = 0,5. Функцию Ф(х) часто называют функцией Лапласа.

Для того чтобы можно было пользоваться таблицей функции Лапласа, преобразуем соотношение (*) так:

О хГ

Р (Ь Ь \ (v. Г р—г*/г Лу _| ' Г р-г’/я =

х' О

-*г-тш I1*г:м~ф'(*г

О о

Итак, вероятность того, что событие А появится в п независимых испытаниях от kt до ft2 раз,

Pn(klt fc2)~ Ф(хя)-Ф(х'),

где х'= (k1—np)l\f npq и x" = (k2—np)j\fnpq.

Приведем примеры, иллюстрирующие применение ин­тегральной теоремы Лапласа.

Пример. Вероятность того, что деталь не прошла проверку ОТК, равна р = 0,2. Найтн вероятность того, что среди 400 случайно ото­бранных деталей окажется непроверенных от 70 до 100 деталей.

Решение. По условию, р = 0,2; q = 0,8; п = 400; Лх = 70; fc2=100. Воспользуемся интегральной теоремой Лапласа:

Р400 (70, 100) йФМ-Ф(*').

Вычислим нижний и верхний пределы интегрирования: х,_ fei — пр __ 70— 400-0,2 t.

Vnpq ~\f400-0,2-0,8 ’ ’ r, пр 100-400-0,2 „ j.

V~npq ~\f400-0,2-0,8 Таким образом, имеем

P400 (70. 100) = Ф (2,5) - Ф (—1,25) = Ф (2,5) +Ф (1,25).

По таблице приложения 2 находим:

Ф (2,5) =0,4938; Ф (1,25) = 0,3944.







Дата добавления: 2015-09-06; просмотров: 495. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия