Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегральная теорема Лапласа





Вновь предположим, что производится п испы­таний, в каждом1 из которых вероятность появления события А постоянна и равна р (0 < р < 1). Как вычис­лить вероятность Pn(kи Л2) того, что событие А появится в п испытаниях не менее kt и не более kt раз (для крат­кости будем говорить «от до ka раз»)? На этот вопрос отвечает интегральная теорема Лапласа, которую мы приводим ниже, опустив доказательство.

Теорема. Если вероятность р наступления события А в каждом испытании постоянна и отлична от нуля и единицы, то вероятность Рп (kx, kt) того, что событие А появится в п испытаниях от kl до /г2 раз, приближенно равна определенному интегралу

ж";

Pn(klt fc,)~-pL=-jV*v»dz, (*)

X'

где *'=(£*—np)lVnpq и xf = (kt—np)/Vnpq.

При решении задач, требующих применения интеграль­ной теоремы Лапласа, пользуются специальными табли­цами, так как неопределенный интеграл §e~zt/,dz не выражается через элементарные функции. Таблица для

X

интеграла Ф (дс) =-р==- J®-**7* пРивеДена в конце книги

(см. приложение 2). В таблице даны значения функции Ф(х) для положительных значений х и для х — 0; для * < 0 пользуются той же таблицей [функция Ф (х) не­ четна, т. е. Ф (— х) — — Ф (*)]. В таблице приведены значения интеграла лишь до х — Ъ, так как для х > 5 можно принять Ф (х) = 0,5. Функцию Ф(х) часто называют функцией Лапласа.

Для того чтобы можно было пользоваться таблицей функции Лапласа, преобразуем соотношение (*) так:

О хГ

Р (Ь Ь \ (v. Г р—г*/г Лу _| ' Г р-г’/я =

х' О

-*г-тш I1*г:м~ф'(*г

О о

Итак, вероятность того, что событие А появится в п независимых испытаниях от kt до ft2 раз,

Pn(klt fc2)~ Ф(хя)-Ф(х'),

где х'= (k1—np)l\f npq и x" = (k2—np)j\fnpq.

Приведем примеры, иллюстрирующие применение ин­тегральной теоремы Лапласа.

Пример. Вероятность того, что деталь не прошла проверку ОТК, равна р = 0,2. Найтн вероятность того, что среди 400 случайно ото­бранных деталей окажется непроверенных от 70 до 100 деталей.

Решение. По условию, р = 0,2; q = 0,8; п = 400; Лх = 70; fc2=100. Воспользуемся интегральной теоремой Лапласа:

Р400 (70, 100) йФМ-Ф(*').

Вычислим нижний и верхний пределы интегрирования: х,_ fei — пр __ 70— 400-0,2 t.

Vnpq ~\f400-0,2-0,8 ’ ’ r, пр 100-400-0,2 „ j.

V~npq ~\f400-0,2-0,8 Таким образом, имеем

P400 (70. 100) = Ф (2,5) - Ф (—1,25) = Ф (2,5) +Ф (1,25).

По таблице приложения 2 находим:

Ф (2,5) =0,4938; Ф (1,25) = 0,3944.







Дата добавления: 2015-09-06; просмотров: 495. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия