Поставленную задачу можно решить с помощью так называемой формулы Бернулли.
Вывод формулы Бернулли. Вероятность одного сложного события, состоящего в том, что в п испытаниях событие А наступит k раз и не наступит п — k раз, по теореме умножения вероятностей независимых событий равна pkqn~k. Таких сложных событий может быть столько, сколько можно составить сочетаний из п элементов по k элементов, т. е. С%. Так как эти сложные события несовместны, то по теореме сложения вероятностей несовместных событий искомая вероятность равна сумме вероятностей всех возможных сложных событий. Поскольку же вероятности всех этих сложных событий одинаковы, то искомая вероятность (появления k раз события А в п испытаниях) равна вероятности одного сложного события, умноженной на их число: P„(A)==C^V-a Или Полученную формулу называют формулой Бернулли. Пример. Вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р = 0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы. Решение. Вероятность нормального расхода электроэнергии в продолжение каждых из 6 суток постоянна н равна р = 0,75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна д = 1—р— 1—0,75 = 0,25.
|