Статистический критерий проверки нулевой гипотезы. Наблюдаемое значение критерия
Для проверки нулевой гипотезы используют специально подобранную случайную величину, точное или приближенное распределение которой известно. Эту величину обозначают через U или Z, если она распределена нормально, F или и* — по закону Фишера—Снедекора, Т —по закону Стьюдента, —по закону «хи квадрат» и т. д. Поскольку в этом параграфе вид распределения во внимание приниматься не будет, обозначим эту величину в целях общности через К. Статистическим критерием (или просто критерием) называют случайную величину К, которая служит для проверки нулевой гипотезы. Например, если проверяют гипотезу о равенстве дисперсий двух нормальных генеральных совокупностей, то в качестве критерия /С принимают отношение исправленных выборочных дисперсий: F = s|/sl. Эта • величина случайная, потому что в различных опытах дисперсии принимают различные, наперед неизвестные значения, и распределена по закону Фишера—Снедекора. Для проверки гипотезы по данным выборок вычисляют частные значения входящих в критерий величин и таким образом получают частное (наблюдаемое) значение критерия. Наблюдаемым значением КИябх называют значение критерия, вычисленное по выборкам. Например, если по двум выборкам найдены исправленные выборочные дисперсии sj = 20 и s| = 5, то наблюдаемое значение критерия F
|