Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Простейшие случаи криволинейной корреляции





Если график регрессии yx = f (х) или ху == ср (у) изображается кривой линией, то корреляцию называют криволинейной.

Например, функции регрессии К на X могут иметь вид:

ух = аха + Ьх + с (параболическая корреляция второго порядка);

ух=-ах* + Ьхг-\-сх-+-й (параболическая корреляция третьего порядка).

Для определения вида функции регрессии строят точки (х; ух) и по их расположению делают заключение о при­мерном виде функции регрессии; при окончательном ре­шении принимают во внимание особенности, вытекающие из сущности решаемой задачи.

Теория криволинейной корреляции решает те же за-, дачи, что и теория линейной корреляции (установление формы и тесноты корреляционной связи). Неизвестные параметры уравнения регрессии ищут методом наимень­ших квадратов. Для оценки тесноты криволинейной кор­реляции служат выборочные корреляционные отношения (см. § 11).

Чтобы выяснить суть дела, ограничимся параболиче­ской корреляцией второго порядка, предположив, что данные п наблюдений (выборки) позволяют считать, что имеет место именно такая корреляция. В этом случае выборочное уравнение регрессии К на X имеет вид

ух = Ах* + Вх + С, (*)

где А, В, С —неизвестные параметры.

Пользуясь методом наименьших квадратов, получают систему линейных уравнений относительно неизвестных параметров (вывод опущен, поскольку он не содержит ничего нового сравнительно с § 4):

(2 л**4) А + (2 пхХя) в + (2 пхх*) С = 2 п^хх*\ } (2л^3М+(2п**а)я+(2л^)с=2л*£**; \ (**)

(2 пх*3) А + (2 п^х) в + пС = 2 пхУ*• J

Найденные из этой системы параметры А, В, С подстав­ляют в (*); в итоге получают искомое уравнение регрессии.

Пример. Найти выборочное уравнение регрессии У на X вида уж= Лдс2 + Вх + С по данным корреляционной табл. 19.

Таблица 19

74,98 /l-f67,48 В + 60,89 С = 413,93, 1 67,48 Л+60,89 В+ 55,10 С = 373,30, \

60,89 Л +55,10 В+ 50 С = 337,59. J

Решив эту систему, найдем: Л = 1,94, В = 2,98, С =1,10. Напишем искомое уравнение регрессии:

Ух = 1,94дс2 + 2,98х+1,10.

Легко убедиться, что условные средние, вычисленные по этому уравнению, незначительно отличаются от условных средних корре­ляционной таблицы. Например, при xx=l найдем: по таблице У\ = 6; по уравнению 1,94+2,98+1,10=6,02. Таким образом, найденное уравнение хорошо согласуется с данными наблюдений (выборки).







Дата добавления: 2015-09-06; просмотров: 1504. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия