Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Другими словами, требуется установить, значимо или незначимо различаются исправленные выборочные дисперсии.





Рассматриваемую здесь гипотезу о равенстве несколь­ких дисперсий называют гипотезой об однородности дисперсий .

Заметим, что числом степеней свободы дисперсии s® на­зывают число kj = П/ —1, т. е. число, на единицу мень­шее объема выборки^ по которой вычислена дисперсия.

Обозначим через s 2 среднюю арифметическую исправ­ленных дисперсий, взвешенную по числам степеней свободы:

г

где k — 2 */•

i— 1

В качестве критерия проверки нулевой гипотезы об однородности дисперсий примем критерий Бартлетта — случайную величину

B = V/C,

Где

= 2,303 jj^fe lg sa — lg s? j,

c = 1 +Т(Г=ГТ) [Z t] •

Бартлетт установил, что случайная величина В при условии справедливости нулевой гипотезы распределена приближенно как с I —1 степенями свободы, если все kt > 2. Учитывая, что —1, заключаем, что п{

1 > 2, или nt > 3, т. е. объем каждой из выборок должен быть не меньше 4.

Критическую область строят правостороннюю, исходя из требования, чтобы вероятность попадания критерия в эту область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости:

р>х£р(а; I— !)]=“•

Критическую точку х«р(а’*—*) находят по таблице приложения 5, по уровню значимости а и числу степеней свободы k = I — 1, и тогда правосторонняя критическая область определяется неравенством В > х«р» а область принятия гипотезы—неравенством В < Хкр-

Обозначим значение критерия Бартлетта, вычисленное по данным наблюдений, через Внабл и сформулируем пра­вило проверки нулевой гипотезы.

Правило. Для того чтобы при заданном уровне зна­чимости а проверить нулевую гипотезу об однородности дисперсий нормальных совокупностей, надо вычислить наблюдаемое значение критерия Бартлетта B = V/C и по таблице критических точек распределения хг найти кри­тическую точку х*р («; I —!)•

Если Внабл < Хкр — нет оснований отвергнуть нулевую гипотезу.

Если Внабл > Хкр—нулевую гипотезу отвергают.

Замечание 1. Не следует тор9пнться вычислять постоян­ную С. Сначала надо найти V и сравнить с Хкр1 если окажется, что

< Хкр, то подавно (так как С > 1) B=(V/C) < Хкр н, следовательно, С вычислять не нужно.

Если же V > Хкр, то надо вычислить С и затем сравнить В с Хкр- Замечание 2. Критерий Бартлетта весьма чувствителен к отклонениям распределений от нормального, поэтому к выводам, полученным по этому критерию, надо относиться с осторожностью.

Таблица 25

               
Номер вы­ борки Объем вы­ борки ni Число степе­ ней сво­ боды ki Дис. Пер­ сия ■? ft.s* п 'gsf lg s. \/k.
      0,25 2,25 1,3979 6,5811  
      0,40 4,80 1,6021 5,2252  
      0,36 5,04 1,5563 7,7822  
      0,46 6,90 1,6628 6,9420  
    к —50   18,99   22,5305  

Пример. По четырем независимым выборкам, объемы которых соответственно равны ^=10, п2= 12, п* = 15, nt= 16, извлеченным нз нормальных генеральных совокупностей, найдены исправленные выборочные дисперсии, соответственно равные 0,25; 0,40; 0,36; 0,46. При уровне значимости 0,05 проверить гипотезу об однородности дисперсий (критическая область — правосторонняя).

Решение. Составим расчетную табл. 25 (столбец 8 пока запол­нять ие будем, поскольку еще неизвестно, понадобится ли вычис­лять С).

Пользуясь расчетной таблицей, найдем:

7а = (2 kiS()/k = 18,99/50 = 0,3798; lg0,3798 = П5795;

= 2,303 [> lg sa — 2 */ lg *?] = 2,303 [50.7,5795 — 22,5305] == 1,02.

По таблице приложения 5, по уровню значимости 0,05 и числу степеней свободы I —1=4—1=3 находим критическую точку Хкр (0,05; 3) = 7,8.

Так как V < Хкр, то подавно (поскольку С > 1) Bnafa = (V/C) < < Хкр и> следовательно, отвергнуть нулевую гипотезу об однородно­сти дисперсий нет оснований. Другими словами, исправленные вы­борочные дисперсии различаются незначимо.

Замечание 3. Если требуется оценить генеральную диспер­сию, то при условии однородности дисперсий целесообразно принять в качестве ее оценки среднюю арифметическую исправленных диспер­сий, взвешенную по числам степеней свободы, т. е.

sa = (2*/s?)/*•







Дата добавления: 2015-09-06; просмотров: 758. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия