Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Эмп. частоты. . .





Допустим, что в предположении нормального распре­деления генеральной совокупности вычислены теорети­ческие частоты n't (например, так, как в следующем па­раграфе). При уровне значимости а требуется проверить нулевую гипотезу: генеральная совокупность распреде­лена нормально.

В качестве критерия проверки нулевой гипотезы при­мем случайную величину

Х2 = 2К' — п\)Чп\.

Эта величина случайная, так как в различных опытах она принимает различные, заранее не известные значе­ния. Ясно, что чем меньше различаются эмпирические и теоретические частоты, тем меньше величина критерия (*), и, следовательно, он в известной степени характеризует близость Эмпирического и теоретического распределений.

Заметим, что возведением в квадрат разностей частот устраняют возможность взаимного погашения положи­тельных и отрицательных разностей. Делением на п\ до­стигают уменьшения каждого из слагаемых; в против­ном случае сумма была бы настолько велика, что при­водила бы к отклонению нулевой гипотезы даже и тогда, когда она справедлива. Разумеется, приведенные сооб­ражения не являются обоснованием выбранного крите­рия, а лишь пояснением.

Доказано, что при п —► оо закон распределения слу­чайной величины (*) независимо от того, какому закону распределения подчинена генеральная совокупность, стре­мится к закону распределения ck степенями свободы. Поэтому случайная величина (*) обозначена через х2. а сам критерий называют критерием согласия «хи квадрат».

Число степеней свободы находят по равенству k = = s —1—г, где s — число групп (частичных интервалов) выборки; г — число параметров предполагаемого распре­деления, которые оценены по данным выборки.

В частности, если предполагаемое распределение — нор­мальное, то оценивают два параметра (математическое
ожидание и среднее квадратическое отклонение), поэтому
г = 2 и число степеней свободы k = s — 1— r=s —1 —2 — = s—3.

Если, например, предполагают, что генеральная сово­купность распределена по закону Пуассона, то оцени­вают один параметр Я,, поэтому г = 1 и k=s — 2.

Поскольку односторонний критерий более «жестко» отвергает нулевую Гипотезу, чем двусторонний, построим правостороннюю критическую область, исходя из требо­вания, чтобы вероятность попадания критерия в эту об­ласть в предположении справедливости нулевой гипотезы была равна принятому уровню значимости а:

р 2 > Zip (а; *)] = «•

Таким образом, правосторонняя критическая область определяется неравенством х2 > Хч> (“I А), а область при­нятия нулевой гипотезы — неравенством х2 < %кр (а’> k).

Обозначим значение критерия, вычисленное по дан­ным наблюдений, через Хнабл и сформулируем правило проверки нулевой гипотезы.

Правило. Для того чтобы при заданном уровне зна­чимости проверить нулевую гипотезу генеральная совокупность распределена нормально, надо сначала вы­числить теоретические частоты, а затем наблюдаемое значение критерия:

Xia 6Ji = '2i(ni — n't)i/ni (**)

и по таблице критических точек распределения х2» по заданному уровню значимости а и числу степеней сво­боды k = s — 3 найти критическую точку Хкр («;&).

Если Хнабл < Хкр —нет оснований отвергнуть нулевую гипотезу.

Если Хнабл > Хкр — нулевую гипотезу отвергают.

Замечание 1. Объем выборки должен быть достаточно велик, во всяком случае,не менее 50. Каждая группа должна содержать не менее 5—8 вариант; малочисленные группы следует объединять в од­ну, суммируя частоты.

Замечание 2. Поскольку возможны ошибки первого и вто­рого рода, в особенности еслн согласование теоретических и эмпи­рических частот «слишком хорошее», следует проявлять осторожность. Например, можно повторить опыт, увеличить число наблюдений, вос­пользоваться другими критериями, построить график распределения, вычислить асимметрию и эксцесс (см. гл. XVII, § 8).

Замечание 3. Для' контроля вычислений формулу (**) пре­образуют к виду

Хнабл =[2Л*/ЛП" ”•

Рекомендуем читателю выполнить это преобразование самостоятельно, для чего надо в (**) возвести в квадрат разность частот, сократить результат на ni и учесть, что 2ni' = n>; ,п'1~п-

Пример. При уровне значимости О.Оопровернть гипотезу о нор­мальном распределении генеральной совокупности, если известны эм­пирические и теоретические частоты:







Дата добавления: 2015-09-06; просмотров: 569. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия