Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Действительно,





d1—l—п, d2 = 3—п,..., d„ = (2n—1)—п. Следовательно,

2d? = (l-n)*-H3—п)»+...+[(2л — 1) —п]«= = [l«+ 3i+... + (2л — 1)а]—2п[1+3+... +(2л —1)]+- + «•«* = [л (4ла—1)/3] — 2л • л2 + л8 — (л8— п)/ 3.

Подставив =л)/^ в (****)» окончательно по­лучим

Рв = 1 •

Свойство 3. Если между качественными признаками А и В нет ни «полной прямот, ни «противоположной» зависимостей, то коэффициент рв заключен между — 1 и —(- 1, причем чем ближе к нулю его абсолютная величина, тем зависимость меньше.

Пример 1. Найти выборочный коэффициент ранговой корреляции Спирмена по данным ранга объектов выборки объема п=10:

У; 6 4 8 1 2 5 10 3 7 9

Решение. Найдем разности рангов di — X[ у?. —5,—2,—5,

3, 1, 3, 5, 2, 1.

Вычислим сумму квадратов разностей рангов:

2d? = 25 + 4 + 25 + 9 + 9+l+9 + 25 + 4+l = 112.

Найдем искомый коэффициент ранговой корреляции, учитывая, что п — 10:

р„= 1 — [б 2 dV(n* — n)] = 1 — [6 -112/(1000 —10)1 =0,32.

Замечание. Если выборка содержит объекты с одинако­вым качеством, то каждому из них приписывается ранг, рав­ный среднему арифметическому порядковых номеров объектов. Напри­мер, если объекты одинакового качества по признаку А имеют порядковые номера 5 и 6, то их ранги соответственно равны: хл = = (5 + 6)/2 = 5,5; *«= 5,5.

Приведем правило, позволяющее установить значи­мость или незначимость ранговой корреляции связи для выборок объема п^9. Если п < 9, то пользуются таб­лицами (см., например, табл. 6.10а, 6.106 в книге: Боль­шее Л. Н., Смирнов Н. В. Таблицы математической статистики. М., «Наука», 1965).

Правило. Для того чтобы при уровне значимости а проверить нулевую гипотезу о равенстве нулю генераль­ного коэффициента ранговой корреляции рг Спирмена при конкурирующей гипотезе Я^.рг^О, надо вычислить критическую точку:

T’kp^kp^ k)Vr(l — pl)/(n — 2),

где п — объем выборки, р„—выборочный коэффициент ран­говой корреляции Спирмена, <кр(a; k) — критическая точка двусторонней критической области, которую находят по таблице критических точек распределения Стьюдента, по уровню значимости а и числу степеней свободы k = п—2.

Если |рв|<7\ф—нет оснований отвергнуть нулевую гипотезу. Ранговая корреляционная связь между качест­венными признаками незначима.

Если |рв| > Тк р — нулевую гипотезу отвергают. Между качественными признаками существует значимая ранговая корреляционная связь.

Пример 2. При уровне значимости 0,05 проверить, является ли ранговая корреляционная связь, вычисленная в примере 1, значимой?

Решение. Найдем критическую точку двусторонней критичес- кой'области распределения Стьюдента по уровню значимости а = 0,05 и числу степеней свободы k = n —2=10—2 = 8 (см. приложение 6): *кр (0,05; 8) = 2,31.

Найдем критическую точку:

7\,p = fKP<a; k)V(\ — pI)/(«—2).

Подставив fK„ = 2,31, n=10, рв = 0,24, получим 7*кр = 0,79.

Итак, Гкр = 0,79, рв = 0,24.

Так как р„ < Гкр — нет оснований отвергнуть нулевую гипотезу; ранговая корреляционная связь между признаками незначимая.







Дата добавления: 2015-09-06; просмотров: 1073. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия