Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Действительно,





d1—l—п, d2 = 3—п,..., d„ = (2n—1)—п. Следовательно,

2d? = (l-n)*-H3—п)»+...+[(2л — 1) —п]«= = [l«+ 3i+... + (2л — 1)а]—2п[1+3+... +(2л —1)]+- + «•«* = [л (4ла—1)/3] — 2л • л2 + л8 — (л8— п)/ 3.

Подставив =л)/^ в (****)» окончательно по­лучим

Рв = 1 •

Свойство 3. Если между качественными признаками А и В нет ни «полной прямот, ни «противоположной» зависимостей, то коэффициент рв заключен между — 1 и —(- 1, причем чем ближе к нулю его абсолютная величина, тем зависимость меньше.

Пример 1. Найти выборочный коэффициент ранговой корреляции Спирмена по данным ранга объектов выборки объема п=10:

У; 6 4 8 1 2 5 10 3 7 9

Решение. Найдем разности рангов di — X[ у?. —5,—2,—5,

3, 1, 3, 5, 2, 1.

Вычислим сумму квадратов разностей рангов:

2d? = 25 + 4 + 25 + 9 + 9+l+9 + 25 + 4+l = 112.

Найдем искомый коэффициент ранговой корреляции, учитывая, что п — 10:

р„= 1 — [б 2 dV(n* — n)] = 1 — [6 -112/(1000 —10)1 =0,32.

Замечание. Если выборка содержит объекты с одинако­вым качеством, то каждому из них приписывается ранг, рав­ный среднему арифметическому порядковых номеров объектов. Напри­мер, если объекты одинакового качества по признаку А имеют порядковые номера 5 и 6, то их ранги соответственно равны: хл = = (5 + 6)/2 = 5,5; *«= 5,5.

Приведем правило, позволяющее установить значи­мость или незначимость ранговой корреляции связи для выборок объема п^9. Если п < 9, то пользуются таб­лицами (см., например, табл. 6.10а, 6.106 в книге: Боль­шее Л. Н., Смирнов Н. В. Таблицы математической статистики. М., «Наука», 1965).

Правило. Для того чтобы при уровне значимости а проверить нулевую гипотезу о равенстве нулю генераль­ного коэффициента ранговой корреляции рг Спирмена при конкурирующей гипотезе Я^.рг^О, надо вычислить критическую точку:

T’kp^kp^ k)Vr(l — pl)/(n — 2),

где п — объем выборки, р„—выборочный коэффициент ран­говой корреляции Спирмена, <кр(a; k) — критическая точка двусторонней критической области, которую находят по таблице критических точек распределения Стьюдента, по уровню значимости а и числу степеней свободы k = п—2.

Если |рв|<7\ф—нет оснований отвергнуть нулевую гипотезу. Ранговая корреляционная связь между качест­венными признаками незначима.

Если |рв| > Тк р — нулевую гипотезу отвергают. Между качественными признаками существует значимая ранговая корреляционная связь.

Пример 2. При уровне значимости 0,05 проверить, является ли ранговая корреляционная связь, вычисленная в примере 1, значимой?

Решение. Найдем критическую точку двусторонней критичес- кой'области распределения Стьюдента по уровню значимости а = 0,05 и числу степеней свободы k = n —2=10—2 = 8 (см. приложение 6): *кр (0,05; 8) = 2,31.

Найдем критическую точку:

7\,p = fKP<a; k)V(\ — pI)/(«—2).

Подставив fK„ = 2,31, n=10, рв = 0,24, получим 7*кр = 0,79.

Итак, Гкр = 0,79, рв = 0,24.

Так как р„ < Гкр — нет оснований отвергнуть нулевую гипотезу; ранговая корреляционная связь между признаками незначимая.







Дата добавления: 2015-09-06; просмотров: 1073. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия