Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Взаимная растворимость жидкостей в тройных системах





Данные по взаимной растворимости жидкостей в тройных системах представляются на треугольных диаграммах. Состав тройной системы выражается с помощью равностороннего треугольника по методу Гиббса или по методу Розебума.

1) метод Гиббса

В

с а

О

А в С

В точках А, В и С – чистые вещества А, В и С. Стороны треугольника выражают составы бинарных систем АВ, ВС и АС. Каждая точка внутри треугольника отвечает составу тройной системы. Необходимо опустить перпендикуляры на стороны треугольника. Сумма длин этих перпендикуляров равна высоте треугольника. Высота Н = 100%, а доли компонентов будут равны отношениям:

Доля компонента А=оа/Н

Доля компонента В=ов/Н

Доля компонента С=ос/Н

2) метод Розебума

В

О

А Д Е С

За 100% принимается длина стороны треугольника. Тогда через точку О проведем линии, параллельные сторонам треугольника. Тогда

Доля компонента А=ЕС/АС

Доля компонента В=ДЕ/АС

Доля компонента С=АД/АС

 

Рассмотрим теперь типы диаграмм взаимной растворимости 3-х жидкостей:

1) Если из трех жидкостей тольrо одна пара имеет ограниченную растворимость, то диаграмма имеет вид:

В


K

А М N С

Кривая МКN – это кривая взаимной растворимости трех жидкостей. Точка К – критическая. С помощью такой диаграммы можно определить составы равновесных жидких фаз и соотношения между массами этих фаз при смешении определенных количеств трех жидкостей. Заштрихованная область на диаграмме – гетерогенная.

2) Если две пары компонентов тройной системы ограниченно растворимы друг в друге, то диаграмма имеет вид:

В


А С

3) Иногда гетерогенные области сливаются друг с другом и занимают одну обширную область:

В


А С

4) Если все три пары компонентов ограниченно растворимы друг в друге, то диаграмма имеет вид:

 

В


А С

5) Если гетерогенная область обширна, то диаграмма имеет вид:

В

А С

 







Дата добавления: 2015-09-06; просмотров: 1176. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия